Enhancing NO_2 gas sensing with $ZnO/W_{18}O_{49}$ heterostructures: Experimental insights and DFT analysis

Jinjin Pei^a, Vahid Khorramshahi^b, Fatemeh Safari^b, Mehran Sookhakian^c, M.R. Mahmoudian^d, Morteza Nouri^e, Ramin Yousefi^{*f-h}

a. Shaanxi Key Laboratory of Bioresource, Collage of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China.

^{b.} Materials and Energy Research Center, Dezful Branch, Islamic Azad University, Dezful, Iran.

^c Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.

^{d.} Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

e. Department of Physics, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

^f Department of Physics, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran.

^{g.} Nano Research Group, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran

^h R&D centre of BMF Science Group, Münster, Germany *Yousefi.ramin@gmail.com, r.yousefi@bmf-grouping.de

Table S1 shows the element concentration that have been obtained by EDX spectra of the samples

Sample	Pure ZnO	ZnO/W ₁₈ O ₄₉
Element		
0	30.22 (%W)	19.31 (%W)
	48.78 (%A)	56.37 (%A)
Zn	69.78 (%W)	50.26 (%W)
	51.22 (%A)	35.90 (%A)
W	0	30.43 (%W)
	0	7.73 (%A)

Fig S1 shows HRTEM images of ZnO/W₁₈O₄₉ heterostructure. Hexagonal disk shape of ZnO and rode shape

of W₁₈O₄₉ are clearly indicated in these HRTEM images. Therefore, a heterostructure has been formed by

ZnO and $W_{18}O_{49}$.

Fig. S1. TEM and HRTEM of ZnO/W₁₈O₄₉ heterostructure

Fig S2 shows sourvey XPS spectrum of $ZnO/W_{18}O_{49}$ heterostructure. This spectrum shows clearly that, the heterostructure is included only oxygen, zinc, and tungsten elements.

Fig. S2. XPS survey scan of $ZnO/W_{18}O_{49}$ heterostructure.

Fig. S3 shows XPS spectrum of Zn-2p and W-4f. These spectra indicates that ZnO and $W_{18}O_{49}$ phases have been formed.

Fig. S3. High resolution XPS spectrum of (a) Zn-2p and (b) W-4f of the $ZnO/W_{18}O_{49}$ heterostructure.