Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Promoting Photocatalytic Conversion of Carbon Dioxide to Methanol of Molybdenum

Dioxide by Sodium Species

Zekun Wang ^{1#}, Zhi Chen^{2#}, Kai Huang³, Chengyu Lu², Chunli Wang², Yuting Ma², Jianjun Chen⁴, Yishan Liu⁵, Jiemin Wang^{6*}, Jinxing Mi^{4*}, Liangzhu Zhang^{2*}

- 1 College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
- 2 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- 3 School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China
- 4 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- 5 College of Mathematics, Sichuan University, Chengdu, 610064, China.
- 6 College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.

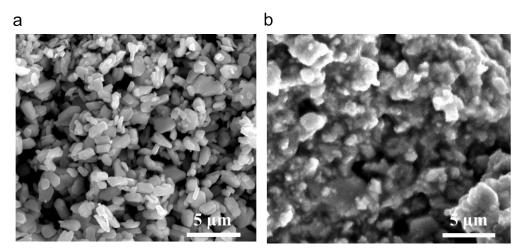


Figure S1. SEM image of (a) MoO₃, (b)Na/MoO₂.

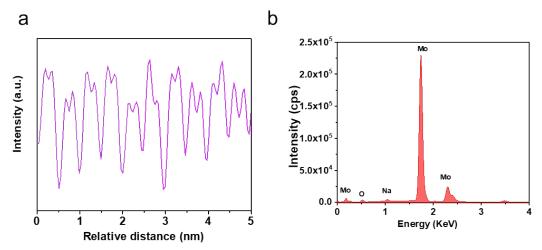
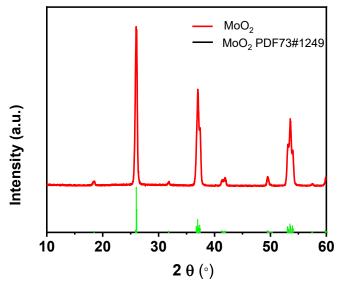



Figure S2. (a) height profile of marked line in Figure 1a. (b) EDS spectra of Na/MoO₂.

Figure S3.XRD profile of MoO₂.

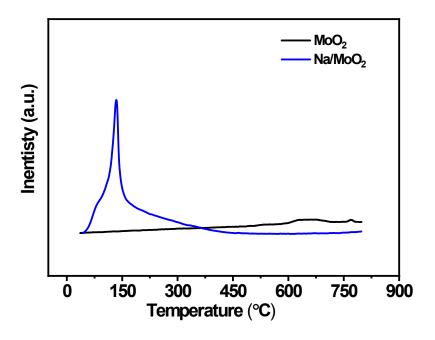


Figure S4. CO_2 -TPD curves of MoO_2 and Na/MoO_2 .

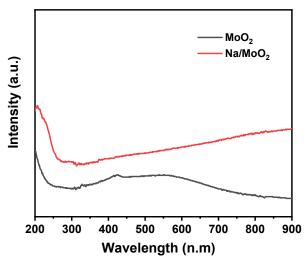


Figure S5. UV-vis diffuse reflectance spectra of MoO_2 and Na/MoO_2 sample.

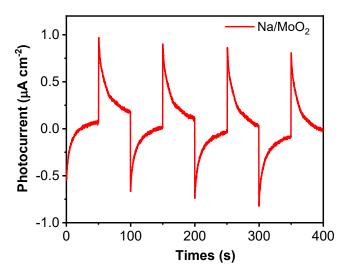
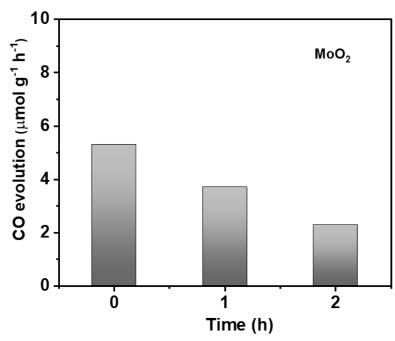
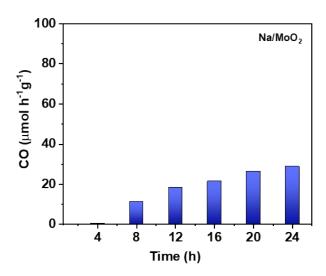




Figure S6. Time-dependent photocurrent curves (i-t curve) Na/MoO $_2$.

Figure S7. CO production over MoO_2 for 2 h.

Figure S8. (a) CO production over Na/MoO $_2$ for 24 h.

Figure S9. Structure model of adsorption intermediates on MoO₂ for every reaction step in CO₂ photocatalytic converting into CH₃OH.