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S1 Device Forming voltage comparison diagram
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Fig.S1. Comparison diagram of Forming voltage values of four devices

As shown in Fig.S1, the Forming voltage of T-HfO, ¢ is 2.4 V, that of T-HfO, ;15 3.2 V,
that of T-HfO, g is 3.7 V, and that of T-HfO; 4 is 6 V. It can be seen that the Forming

voltage increases with the increase of x value.



S2 Comparison diagram of low resistance consistency of T-HfO;,; with other

memristor devices
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Fig.S2. Low resistance consistency comparison diagram
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As shown in Fig. S2, comparing T-HfO ; with other memristor devices!** with improved
consistency, T-HfO; ; has good low-resistance consistency because we control the CFs

breakage in the HfO, middle layer.



S3 Pavlov's dog experiment of T-HfO, ; device
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Fig.S3. Device implementation of Pavlov's dog process diagram

As shown in Fig. S3, first, a single bell ringing does not cause the dog to salivate, the T-
HfO, ; is placed in a low conduction state, and the pulse stimulation with an amplitude of
1V is used to simulate the bell ringing, and the T-HfO, ; is still in a low conduction state.
The food alone causes the dog to salivate, and a pulse stimulus with a amplitude of 3V is
used to simulate the food, which can be seen to put the T-HfO, 7 in a high conduction
state; Further, in the training process, the dog was fed when the bell rang, establishing a
connection between the food and the bell, after this training, when the food was removed,
the bell sounded, the dog would also secrete saliva, and voltage was applied to the T-
HfO, ; at the same time. It can be observed that when the 3V pulse stimulation was
removed, the device was still in a high conductivity state, but with the increase of time,
after the food was removed, the T-HfO;; was still in a high conductivity state. The

association between food and ringing gradually weakens and disappears.



S3 Estimation of non-ideal factors

The mathematical fitting of T-HfO, 4's simulated weight update behavior is as follows? :

-N
Grp= 3(1 —e ) + G #(1.1)
N=Nmax
Girp=G, - 3(1 —e 4 )#(1.2)
~Nimax

B =Gy~ Gmm)/(l —e 4 )#(1.3)

Where Grp and Grp are functions of the LTP/LTD curve varying with the number of
pulses N, G.x and Ny, 1s the saturation conductance value and the maximum number of
pulses allowed to be applied, respectively, and A and B are the parameters to be fitted.

Further, the nonlinearity (o)can be fitted:

1.726
a=—"""_#(1.4)
A+0.162



Table S1. CV of LRS, HRS and Nonlinear parameter of LTD/LTP between synaptic

memristor devices

Nonlinear parameter

Device CV of LRS/HRS Ref.
of LTP/LTD
Au/HfO,/TaO,/HfO,/Ti/TiN 0.28/0.57 5.3/11.9 4
Pt/HfO, NRs/TiN 0.219/0.312 6
Pt/Ti0,/Zn0O/Si0,/TaN 0.155/0.326 8/0.52 7
Al/A-C-B-D TiO,/Al 2.4/4.6 8
n-Si/HfO,/WO5/Ag 2.49/5.54 9
This
T-HfO, , 0.017/0.126 1.55/4.55
work
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