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S1 Device Forming voltage comparison diagram

Fig.S1. Comparison diagram of Forming voltage values of four devices

As shown in Fig.S1, the Forming voltage of T-HfO1.6 is 2.4 V, that of T-HfO1.7 is 3.2 V, 

that of T-HfO1.8 is 3.7 V, and that of T-HfO1.9 is 6 V. It can be seen that the Forming 

voltage increases with the increase of x value.
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S2 Comparison diagram of low resistance consistency of T-HfO1.7 with other 

memristor devices

Fig.S2. Low resistance consistency comparison diagram

As shown in Fig. S2, comparing T-HfO1.7 with other memristor devices1-4 with improved 

consistency, T-HfO1.7 has good low-resistance consistency because we control the CFs 

breakage in the HfO2 middle layer.
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S3 Pavlov's dog experiment of T-HfO1.7 device

Fig.S3. Device implementation of Pavlov's dog process diagram

As shown in Fig. S3, first, a single bell ringing does not cause the dog to salivate, the T-

HfO1.7 is placed in a low conduction state, and the pulse stimulation with an amplitude of 

1V is used to simulate the bell ringing, and the T-HfO1.7 is still in a low conduction state. 

The food alone causes the dog to salivate, and a pulse stimulus with a amplitude of 3V is 

used to simulate the food, which can be seen to put the T-HfO1.7 in a high conduction 

state; Further, in the training process, the dog was fed when the bell rang, establishing a 

connection between the food and the bell, after this training, when the food was removed, 

the bell sounded, the dog would also secrete saliva, and voltage was applied to the T-

HfO1.7 at the same time. It can be observed that when the 3V pulse stimulation was 

removed, the device was still in a high conductivity state, but with the increase of time, 

after the food was removed, the T-HfO1.7 was still in a high conductivity state. The 

association between food and ringing gradually weakens and disappears.



5

S3 Estimation of non-ideal factors

The mathematical fitting of T-HfO1.7's simulated weight update behavior is as follows5：

𝐺𝐿𝑇𝑃= 𝐵(1 ‒ 𝑒
‒ 𝑁
𝐴 ) + 𝐺𝑚𝑖𝑛#(1.1)

𝐺𝐿𝑇𝐷= 𝐺𝑚𝑎𝑥 ‒ 𝐵(1 ‒ 𝑒
𝑁 ‒ 𝑁𝑚𝑎𝑥

𝐴 )#(1.2)
𝐵= (𝐺𝑚𝑎𝑥 ‒ 𝐺𝑚𝑖𝑛)/(1 ‒ 𝑒

‒ 𝑁𝑚𝑎𝑥
𝐴 )#(1.3)

Where GLTP and GLTD are functions of the LTP/LTD curve varying with the number of 

pulses N, Gmax and Nmax is the saturation conductance value and the maximum number of 

pulses allowed to be applied, respectively, and A and B are the parameters to be fitted. 

Further, the nonlinearity (α)can be fitted:

𝛼=
1.726

𝐴+ 0.162
#(1.4)
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Table S1. CV of LRS, HRS and Nonlinear parameter of LTD/LTP between synaptic 

memristor devices

Device CV of LRS/HRS
Nonlinear parameter 

of LTP/LTD
Ref.

Au/HfOx/TaOy/HfOx/Ti/TiN 0.28/0.57 5.3/11.9 4

Pt/HfO2 NRs/TiN 0.219/0.312 6

Pt/TiOx/ZnO/SiO2/TaN 0.155/0.326 8/0.52 7

Al/A-C-B-D TiOx/Al 2.4/4.6 8

n-Si/HfO2/WO3/Ag 2.49/5.54 9

T-HfO1.7 0.017/0.126 1.55/4.55
This 

work
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