Electrostatic interaction enhanced chromophore reaction: cationic pyridinium functionalized pyrrolopyrrole *aza*-BODIPY fluorophore for highly efficient H₂S detection

Xiaomei Jiang a, Xueguagn Ranb, Derong Caoa, Lingyun Wang*a

^a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China, 510641. E-mail: lingyun@scut.edu.cn

^b Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510641, China

1 Experimental

1.1 Chemicals and instruments

¹H NMR, ¹¹B NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded on a Bruker Avance III 400 MHz. UV-*vis* absorption spectra and fluorescence spectra were recorded using a Helios Alpha UV-*vis* scanning spectrophotometer and a Hitachi F-4500 FL spectrophotometer, respectively. All reagents and solvents were used directly without further purification. MALDI-TOF mass spectra were recorded on a Bruker BIFLEX III ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometer. The theoretical calculations of energy levels and ground-state structures were optimized with the B3LYP/6-31G* method. Geometry optimizations are performed at the B3LYP and TD-B3LYP levels.

1.2 Spectroscopic measurements

The anions and biological thiols were dissolved in double distilled water to afford stock solution (50 mM). The H₂S test solution is made of Na₂S aqueous solution (1 M). Probes (**PPAB-Br**, **PPAB-Py**, **PPAB-Ps**) were dissolved in dioxane to afford the stock solution (1 mM). Test solutions were prepared by placing 1 mL of probe stock solution into a 100 mL volumetric flask, adding an appropriate aliquot of each anion or biological thiols stock solution, and diluting the solution to 100 mL with dioxane. The resulting solution (10 μM) was shaken well for desired time at room temperature for absorption and fluorescence spectral analysis.

1.3 Experimental procedure for H₂S detection

Three dyes (**PPAB-Br**, **PPAB-Py**, and **PPAB-Ps**) were dissolved in THF to afford the stock solution (1 mM). The anions were dissolved in double distilled water to afford stock solution (0.1 M). The H₂S test solution is made of Na₂S aqueous solution (0.1 M). Test solutions were prepared by placing 1 mL of probes stock solution into a 100 mL volumetric flask, adding an appropriate aliquot of each anion stock, and diluting the solution to 100 mL with dry THF. The resulting solution (10 μM) was shaken well for desired time at room temperature for absorption and fluorescence spectral analysis.

1.4 Preparation of PPAB-Ps-loaded polyamide thin film and test paper

The polyamide thin film or test paper was immersed into **PPAB-Ps** dioxane solution

(50 μM) for 5 min at room temperature. After dioxane is evaporated, **PPAB-Ps**-loaded polyamide thin film or test paper was dried at oven and kept in a desiccator before use.

1.5 Preparation of PPAB-Ps coated filter paper

A volume of 20 μ L of THF stock solution of the **PPAB-Ps** (10 mM) was drop-casted onto the Whatman filter paper followed by evaporation to dry. A volume of 400 μ L of Na₂S solution (1 mM) was prepared and used as ink for writing.

1.6 Measurement of detection limit

The detection limit was gained from the UV-vis and FL titration data. On the basis of the results of the UV-vis and FL titrating experiment, a good linear relationship was obtained. A limit of detection (LOD) was calculated by means of Eq. (1):

Detection limit = $(3 \times \sigma) / k (1)$

Where σ is the standard deviation of blank measurements, k is the slope between maximum absorption or emission peaks versus Na₂S concentration.

1.7 Detection of the released H₂S in eggs with PPAB-Ps coated filter paper

The eggs were bought from a local supermarket. After eggshell was broken, it was kept in airtight containers at room temperature, where **PPAB-Ps** -loaded filter paper was hanged inside. After desired incubation time, the filter paper was taken out for fluorescence test.

1.8 Preparation of real samples

The lake water and tap water samples used in the experiment were taken from West Lake and laboratory in South China University of Technology, respectively. The mineral water and whole milk were brought from local supermarket. All real samples are used without any pretreatment. The H₂S test solution is made of Na₂S aqueous solution. Na₂S solid was dissolved in four real samples to afford corresponding S²-aqueous solution (1 M). Test solutions were prepared by placing 1 mL of **PPAB-Ps** stock solution (1 mM in dioxane) into a 100 mL volumetric flask, adding an appropriate aliquot of each Na₂S stock solution in real samples, and diluting the solution to 100 mL with dry dioxane. The resulting solution (10 μM) was shaken well for 10 min at room temperature for absorption spectral analysis. Three parallel samples are prepared and used for the test. The sample was repeatedly detected for three times.

1.9 Detection of the released H₂S in eggs with PPAB-Ps -loaded test paper

The eggs and meat (pork, fish, shrimp) were bought from a local supermarket. The broken egg and meat were kept in airtight containers at room temperature, where **PPAB-Ps** -loaded test paper was hanged inside. After desired incubation time, the test paper was taken out for fluorescence test.

1.10 Determination of Meat Freshness with PPAB-Ps Test Strips.

Meat samples (pork and shrimp) were bought from local Supermarket (Guangzhou, China). The meat samples were placed inside glass Petri dishes (80 mL), and the **PPAB-Ps** test strips were fixed at the inner lids of the Petri dishes. The lid was put back on the Petri dishes and sealed with tape. These samples were stored at 25 °C for 0, 12 and 24 h. The fluorescence pictures of these test strips under 365 nm ultraviolet light were recorded with a mobile phone, and then RGB (red, green, and blue) values were read out with an APP software (Dragon RGB). The G/R ratios were plotted against the concentrations of cadaverine to generate a calibration curve.

1.11 Determination of Total Volatile Basic Nitrogen in Meat Samples.

The contents of total volatile basic nitrogen (TVBN) in meat samples were determined according to the Chinese Standard GB 5009.228-2016. Meat sample (1.000 g) and 50 mL of distilled water was placed in a 150 mL conical flask; then, they were shaken to make the sample dispersed. Later, it was filtered, and 0.5 g of magnesium oxide was added to 25 mL of filtrate. For the control group, 25 mL of distilled water and 0.1 g of (NH₄)₂SO₄ were used to replace the real sample. The content of TVBN was determined by steam distillation. Steam distillation was performed using the Kjeldahl distillation unit for 300 s. The distillate was absorbed by boric acid (30 mL, 20 g/L) and then titrated with hydrochloric acid (0.1 mol/L). The contents of TVBN were calculated according to the Chinese Standard GB 5009.228-2016.

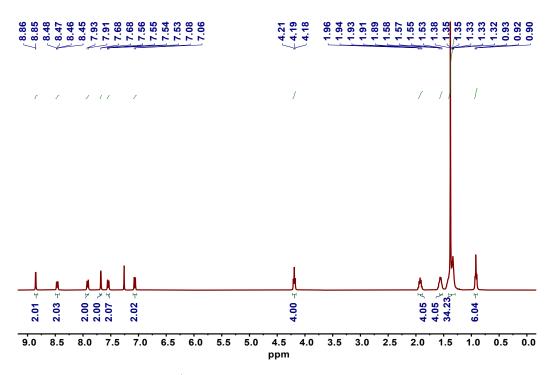


Figure S1 ¹H NMR spectrum of **PPAB-Br** in CDCl₃

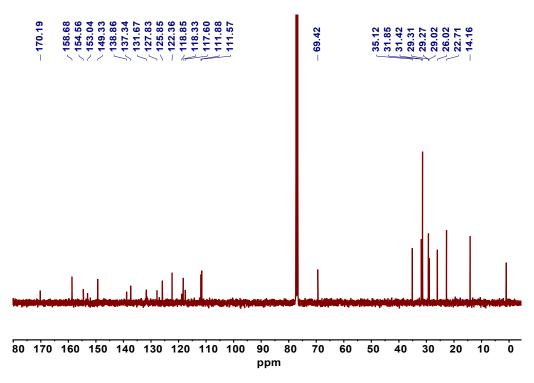


Figure S2 13 C NMR spectrum of **PPAB-Br** in CDCl₃

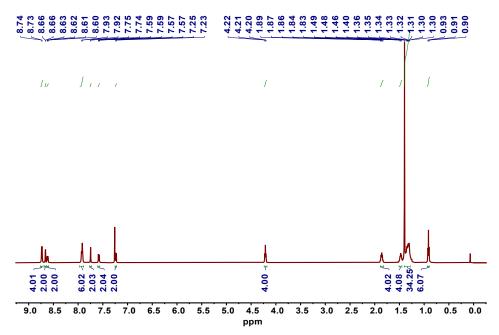


Figure S3 ¹H NMR spectrum of **PPAB-Py** in CDCl₃

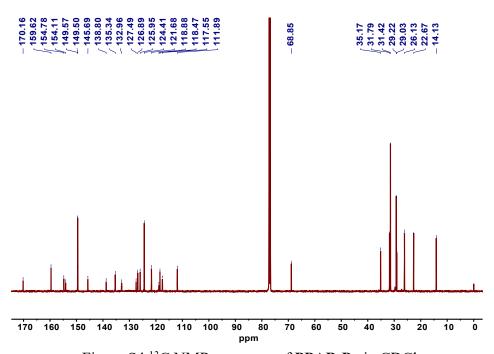


Figure S4 13 C NMR spectrum of **PPAB-Py** in CDCl₃

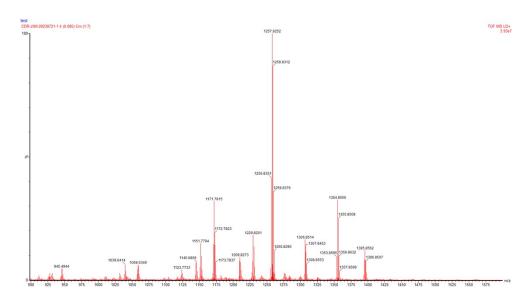
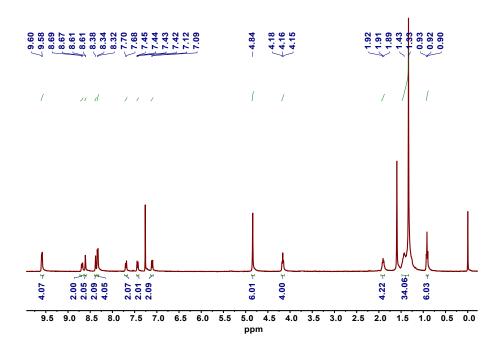
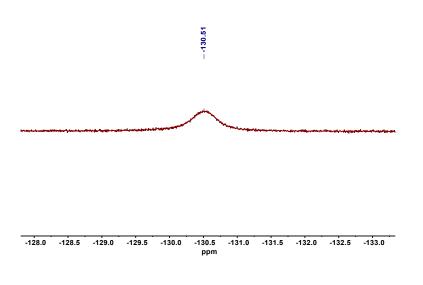




Figure S5 The MALDI-TOF spectra of **PPAB-Py**

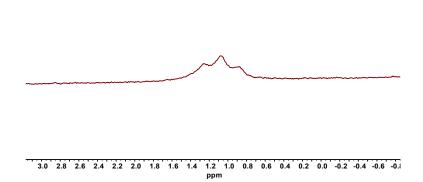


Figure S6 1 H NMR, 19 F and 11 B spectra of **PPAB-Ps** in CDCl $_3$

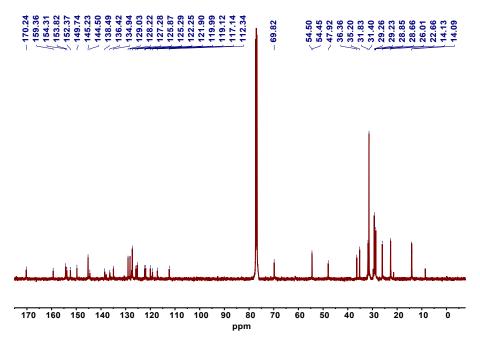


Figure S7 ¹³C NMR spectrum of **PPAB-Ps** in CDCl₃

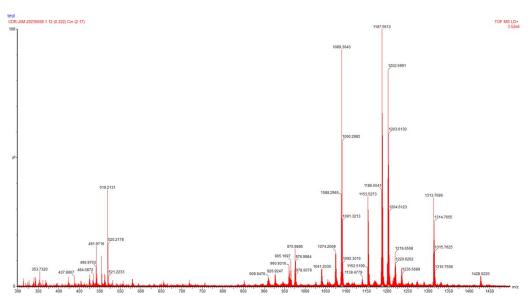


Figure S8 The MALDI-TOF spectra of **PPAB-Ps**

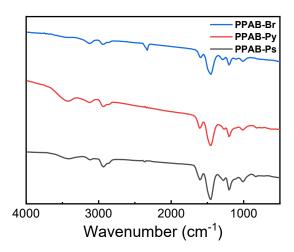


Figure S9 The FTIR spectra of PPAB-Br, PPAB-Py, and PPAB-Ps

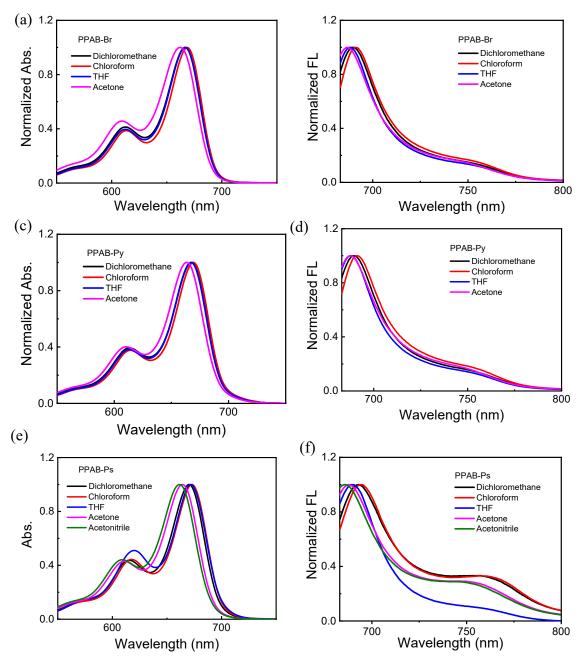


Figure S10 Normalized UV-vis and emission spectra of (a, b) **PPAB-Br**, (c, d) **PPAB-Py**, (e, f) **PPAB-Ps** (10 μ M) in different solvents ($\lambda_{ex} = 450 \text{ nm}$).

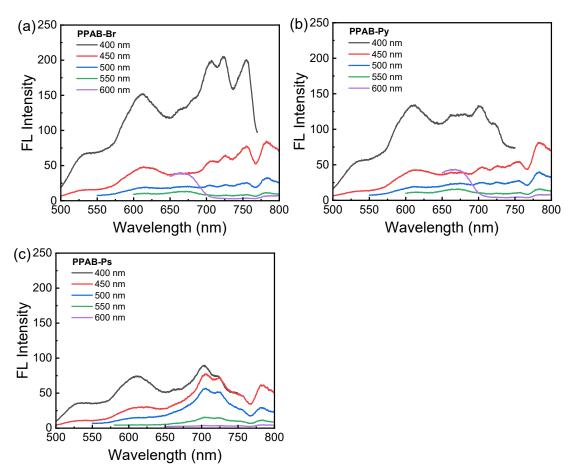


Figure S11 The excitation spectra of **PPAB-Br**, **PPAB-Py** and **PPAB-Ps** in dioxane (10⁻⁵ M).

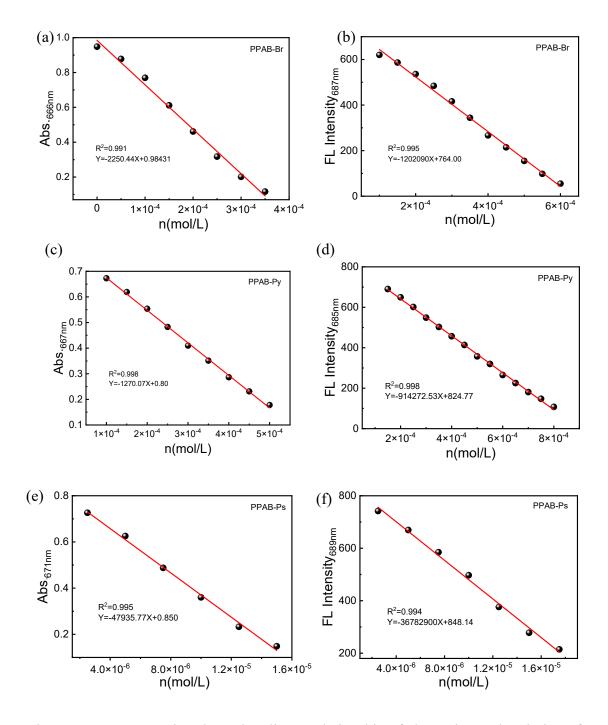


Figure S12 Concentration-dependent linear relationship of absorption and emission of **PPAB-Br** (a, b), **PPAB-Py** (c, d) and **PPAB-Ps** (e, f) in presence of Na₂S solution at 25 °C.

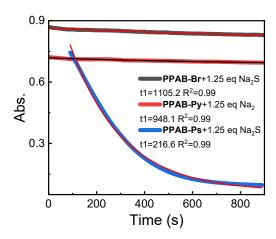


Figure S13 The kinetic curves of **PPAB-Br**, **PPAB-Py**, **PPAB-Ps** in presence of H_2S at room temperature (10 μ M).

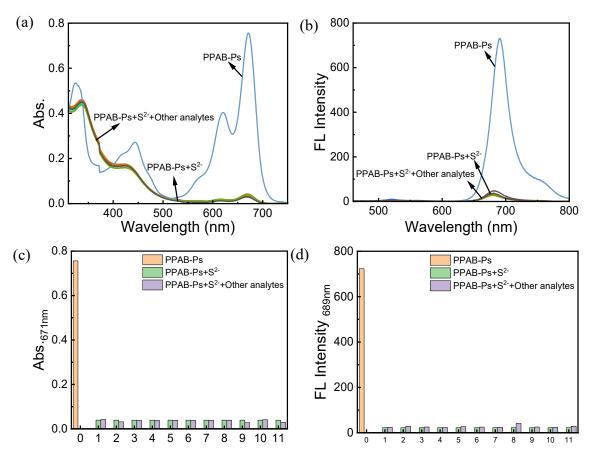


Fig. S14 (a) UV-vis absorption, (b) emission spectra of **PPAB-Ps** (10 μ M) in presence of S²⁻ (30 μ M) and other analytes (30 μ M) at room temperature. The bar chart based on Abs at 671 nm (c) and fluorescence intensity at 689 nm (d) (0. **PPAB-Ps**; 1. NO₃⁻; 2. NO₂⁻; 3. SO₄²⁻; 4. SO₃²⁻; 5. HSO₃⁻ 6. F⁻; 7. Cl⁻; 8. Br⁻; 9. AcO⁻, 10. GSH, 11. Cys).

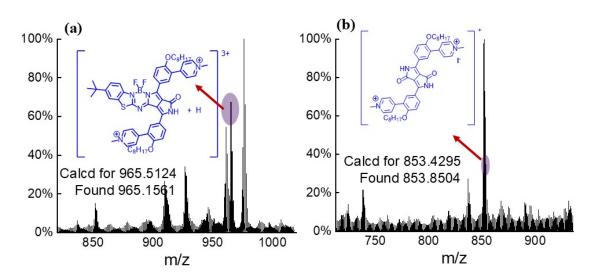


Figure S15 The MALDI-TOF spectra of **PPAB-Ps** with (a) less and (b) excess Na₂S.

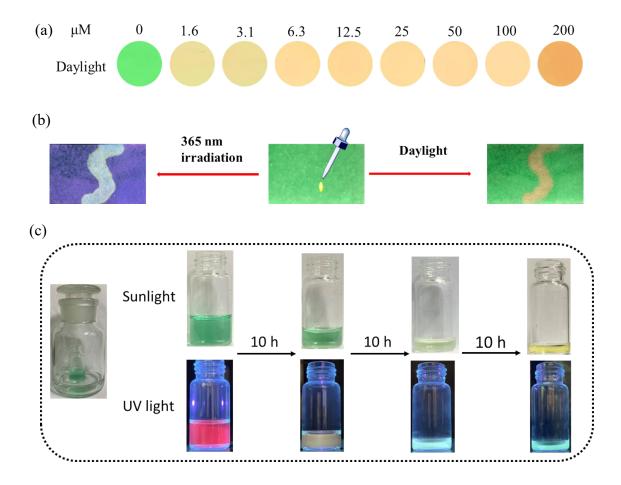


Figure S16 **PPAB-Ps**-loaded polyamide thin film (a) and test paper (b) in presence of Na₂S aqueous solution. (c) Colorimetric and fluorescent colorimetric responses of **PPAB-Pys** (10⁻⁵ M) solution exposure to H₂S generated from Na₂S and HCl.

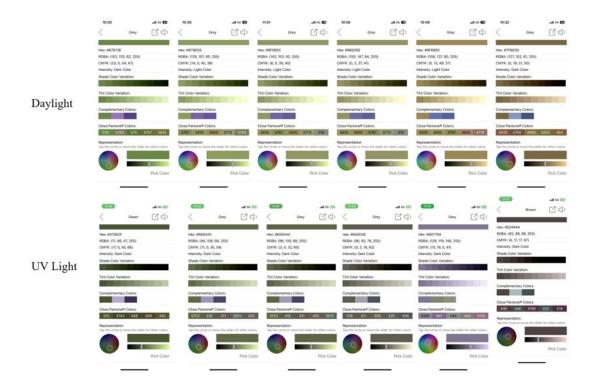


Figure S17 The picture of R, G, B value by use of Color Finder APP from the photos of **PPAB-Ps** - loaded test paper in presence of Na_2S solution in Figure 5a under day light and UV light (365 nm), respectively.

Table S1 Spectroscopic data of **PPAB-Br**, **PPAB-Py** and **PPAB-Ps** (10 μM) in different organic solvents.

Compound	Solvent	$\lambda_{max,abs}$	$\lambda_{max, \ em}$	Stokes shift	ε
		(nm) (nm) (cm^{-1})		M ⁻¹ cm ⁻¹	
	Chloroform	673	694	450	1.1×10 ⁵
	Dichloromethane	670	692	475	9.1×10^4
PPAB-Ps	Acetone	664	687	504	8.6×10^4
	Acetonitrile	661	685	530	8.4×10^4
	THF	672	689	367	5.9×10 ⁴
PPAB-Br	Chloroform	668	691	498	1.2×10 ⁵
	Dichloromethane	667	690	522	9.3×10 ⁴
	THF	666	688	480	1.0×10^{5}
	Acetone	662	686	528	7.7×10 ⁴
	Chloroform	669	691	476	1.1×10 ⁵
PPAB-Py	Dichloromethane	667	689	479	8.3×10^{4}
	THF	667	688	458	9.2×10^{4}
	Acetone	663	687	527	1.2×10 ⁵

Table S2 The comparison of probes for H_2S detection

Chemical structure	Sensing mechanism	Remarks	Ref.	
NO2 NON NON	Thiolysis	Turn-on fluorescence enhancement, LOD = 105 nM	Spectrochim., Acta A 2022, 272, 121007	
O ₂ N NO ₂	Reduction reaction	Fluorescence intensity at 550 nm, $LOD = 5.2 \text{ nM}$	New J. Chem., 2017, 41, 3367	
O ₂ N NO ₂	Reduction reaction	Fluorescence of the probe turned on LOD =21 nM	Tetrahedron 2020, 76, 131317	
	Thio- phenecarboxylic ester cleavage	LOD = 0.50 μM (FL)/ 0.10 μM (UV)	Journal of Molecular Structure, 2020, 1207, 127822	
N ₃ O O O O O O O O O O O O O O O O O O O	Reduction reaction	Fluorescence "Turn on" at 515 nm, LOD =3.99 μM	Molecules, 2023, 28, 6195	
N ₃	Reduction reaction	off-on fluorescent sensor, LOD= 56 nM	Chin. J. Chem., 2017, 35, 477	
	Thenoic acid ether group cleavage	Fluorescence "Turn on" at 504 nm, LOD = 0.10 μM	Journal of Analytical Methods in Chemistry, 2019, 47,1915	
CI CI CH ₃	Thiolysis	Fluorescence "Turn on" response, LOD = 130 nM	Dyes and Pigments, 2021, 196, 109765	
CC ₈ H ₁₇ ⊕	Chromophore reaction	Dual channel detection, LOD = 88.4 nM	This work	

Table S3 The R, G, B value by use of Color Finder APP from the photos of **PPAB-Ps** - loaded test paper written in presence of Na₂S solution in Figure 5a under day light and UV light (365 nm), respectively.

H ₂ S concentration (μM)		5	10	15	20	25	30
	R	103	135	143	150	159	127
	G	135	157	153	147	137	102
Daylight	В	62	85	92	94	73	61
	G/(R+G)	0.56723	0.53767	0.51689	0.49495	0.46284	0.44541
	R	71	94	96	96	128	82
365 nm	G	86	106	100	93	119	68
irradiation	В	47	68	68	78	148	68
	G/R+G	0.54777	0.53	0.51020	0.49206	0.48178	0.45333