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Experimental section

1. Materials and Methods

The starting materials such as carbazole, 1,6-dibromohexane, cyanoacetic acid,
rhodanine-3-acetic acid, rhodanine, barbituric acid, 1,3-dimethylbarbituric acid, 1,3-diethyl-
2-thiobarbituric acid, 2,4-thiazolidinedione, oxindole (2-indolone), and 4-nitrophenyl
acetonitrile were procured from Sigma-Aldrich, Alfa Aesar, and Spectrochem companies. All
the synthetic grade solvents used in the reactions (Merck, Loba Chemie, and Spectrochem
companies) were purified by different processes such as drying and distillation. All the
reactions were carried out under an inert atmosphere and the reaction completion was
gradually monitored by the TLC technique. The standard synthesis protocol was used to
synthesize the designed dyes. The final dye molecules and their intermediates were purified
using recrystallization or column chromatographic separation techniques. The melting points
of synthesized molecules were recorded using the Stuart SMP10 digital melting point
apparatus. 'H NMR and *C NMR spectra of all the synthesized molecules were recorded on
a Bruker Avance (III) 400 MHz instrument by using CDCl;/DMSO-dg as a solvent and TMS
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as an internal standard. The mass spectra and elemental analysis of the synthesized dyes
DCH,_ were obtained from LC-MS6410Q (Agilent Technologies) and Flash EA1112 CHNS
elemental analyzer (Thermo Scientific), respectively. Further, ATR-FTIR spectra were
obtained using Bruker FTIR Alpha spectrometer. Also, Thermogravimetric analysis (TGA)
was carried out using a Perkin Elmer TGA4000 analyzer, at the heating rate of 10 °C min’!
under the nitrogen atmosphere. Similarly, differential scanning calorimetry (DSC) studies
were performed using NETZSCH DSC 404F1 analyzer at the heating rate of 10 °C min™'.
The UV-Vis absorption spectra and photoluminescence spectra of DCH; in N,N-dimethyl
formamide (DMF) solvent were recorded at room temperature by using Analytik Jena
SPECORD S 600 and Jasco FP 6200 spectrophotometers, respectively. Furthermore, to
calculate their experimental GSOP and ESOP values, the CV (cyclic voltammetry)
measurements were performed in anhydrous acetonitrile solution with 0.1M
tetrabutylammonium hexafluorophosphate [TBA] [PF¢] as a supporting electrolyte at a scan
rate of 100 mVs™!. The theoretical simulations, viz. density functional theory (DFT) and time-
dependent density functional theory (TD-DFT), were performed for all the final molecules

using the Turbomole V7.2 software package.[!-]
Photoelectrochemical Measurements

The DSSC devices sensitized with new DCHy.9 dye molecules were fabricated by
using the doctor blade technique. Similarly, DSSCs were constructed employing the dyes
DCH,_ as co-sensitizers along with Ru-based HD-2 dye and chenodeoxycholic acid (CDCA)
as a co-adsorbent. Further, the Current-Voltage (J-V) characteristics of fabricated devices
were measured using solar simulator Oriel SOL3A connected to Keithley 2400 source mete
under the illumination of AM 1.5 G solar source. The intensity of incident light was
calibrated using a reference Si solar cell (Newport Oriel, 91150V) to set 1 Sun (100 mWcm2)
and the corresponding measurement was fully controlled under Oriel IV test station software.
Further, incident photon conversion efficiency (IPCE) spectra of all the fabricated devices
with DCH;y were recorded using the QEXI10 PV measurement system. Finally,
electrochemical impedance spectra (Nyquist and Bode plots) for the fabricated devices were
measured with Bio-Logic SP-150 potentiostat over a frequency range of 100 mHz to 200 kHz
at 298K using a solar simulator under the illumination of a standard 1.5 G light source.
Further, the applied voltage was set at the V¢ of the devices with AC amplitude fixed at 10
mV. The obtained plots were fitted via Z-Fit software (Bio-Logic).



2. Synthetic Methods
The required intermediates and final target molecules were synthesized using standard
synthetic methods and their detailed procedures along with structural characterization data

are given below.
2.1. Synthesis of 1,6-di(9H-carbazole-9-yl)hexane (1)

A mixture of carbazole (12 g, 71.70 mmol), and NaH (3.5 g, 143.35 mmol) was dissolved

in 30 mL of DMF and stirred at 0 °C for half an hour under an argon atmosphere. Further,
1,6-dibromohexane (7 g, 28.69 mmol) was added to the reaction mixture and continued
stirring at room temperature for 12 h. The reaction progress was monitored using thin-layer
chromatography (TLC). After completion of the reaction, the reaction mixture was cooled
and poured into crushed ice (250 mL) and neutralization was done using a saturated solution
of ammonium chloride. The precipitate formed was filtered, washed with ice-cold water, and
finally, it was recrystallized using ethanol to get an off-white solid as a product. Yield: 92%.
Melting point: 108-110 °C.
'TH NMR (400 MHz, CDCls, 4 ppm): 8.10-8.08 (d, 4H), 7.44-7.41 (m,4H), 7.33-7.23 (t, 4H,
7.21-7.20 (d, 4H), 4.25-4.22 (t, 4H), 1.83-1.81 (t,3H), 1.57-1.26 (m, 5H). Anal. Calcd. for
Cs0HogN»: C, 86.50; H, 6.78; N, 6.72; and found C, 86.13; H, 6.49; N, 6.13. FT-IR (ATR), v
cm!: 3063, 2956 (C-H), 1589, 1533, 1482 (C=C), 1191 (C-N).

2.2. Synthesis of 9,9"-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2)

In a cleaned two-neck round bottom flask, freshly distilled DMF (18.58 mL, 240.06
mmol) was taken and cooled at —3 to 4 °C. Then, phosphorous oxychloride, POCI; (22.4 mL,
240.06 mmol) was added drop-wise with constant stirring at the same temperature under an
argon atmosphere to obtain a glassy white salt. To this mixture, 1,6-di(9H-carbazole-9-
yl)hexane (1, 5 g, 12 mmol) dissolved in dichloroethane (10-12 mL) was added. The reaction
mixture was refluxed at 110 °C for 2 h. After completion of the reaction, the reaction mass
was cooled to room temperature, and poured into 200 mL crushed ice, and subsequently
basified by using 5 M NaOH solution. The product formed was extracted with
dichloromethane (50 mL x 4) and the organic layer was dried over sodium sulphate and

evaporated under reduced pressure. The impure residue was later purified by column



chromatography on silica gel (100-200 mesh) to yield a pale brown solid (2). Yield: 69%.
Melting point: 148-150 °C.

'TH NMR (400 MHz, CDCl3, & ppm): 10.07 (s, 2H), 8.58-8.58 (d, 2H), 7.95-7.93 (t, 2h), 7.49-
7.48 (t, 2H), 7.47-7.46 (d, 2H), 7.36-7.28 (m,6H), 4.27-4.25 (t, 4H), 1.84-1.81 (t, 4H), 1.58-
1.34 (m, 4H). Anal. Calcd. for C5,HsN,0,: C, 81.33; H, 5.97; N, 5.93; and found C, 81.46;
H, 5.89; N, 5.13. FT-IR (ATR), v cm™': 2956, 2927 (C-H), 1681 (C=0), 1587, 1482 (C=C),
1193 (C-N).

2.3. Synthesis of (2E,2'E)-3,3"-(9,9 -(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis(2-cyano
acrylic acid) (DCH,)

A mixture of intermediate 9,9"-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2,
0.5 g, 1.058 mmol), cyanoacetic acid (0.1 g, 1.26 mmol), and ammonium acetate (0.89 g,
11.6 mmol) and glacial acetic acid (5 mL) were taken in a RB flask and refluxed for 12 h
under argon atmosphere. The completion of the reaction was monitored using the TLC
technique. After its completion, the reaction mixture was cooled to room temperature and
poured into ice-cold water. The solid obtained was filtered, washed with cold water, and
finally, dried. The crude product was recrystallized from absolute methanol to get the pure
product DCH; as a bright yellow solid. Yield: 89%. Melting point: 280-282 °C.
'H NMR (400 MHz, DMSO-dg, 8 ppm): 10.05 (s, 1H), 8.85 (s, 1H), 8.75 (s, 1H), 8.45 (s,
1H), 8.29-8.26 (t, 2H), 8.15-8.14 (d, 1H), 7.96-7.95 (d, 1H), 7.77-7.76 (d, 1H), 7.72-7.71 (d,
1H), 7.64-7.63 (m, 2H), 7.52-7.51 (m, 3H), 7.32-7.29 (dd, 2H), 4.42-4.39 (t, 4H), 1.72-1.31
(m, 8H). 3C NMR (400 MHz, DMSO-d¢, 6 ppm): 192.27, 164.63, 155.66, 143.94, 143.11,
141.19, 141.12, 128.67, 128.12, 127.33, 127.15, 127.03, 126.06, 124.42, 122.92, 122.77,
122.69, 122.64, 122.41, 121.28, 120.99, 120.79, 120.56, 117.79, 110.67, 110.45, 110.15,
98.85, 31.15, 28.69, 26.42. Anal. Calcd. for C3gH30N4O4: C, 75.23; H, 4.98; N, 9.24 and
found C, 75.39; H, 4.12; N, 9.21. FT-IR (ATR), v cm'!: 2942, 2860 (C-H stretch), 2226
(C=N stretch), 1687 (C=0 stretch), 1581, 1495 (C=C), 1156 (C-N stretch). Mass (m/z):
606.67; Obtained (M-H): 605.25.

2.4. Synthesis of 2-((£)-5-((9-(6-(3-((£)-(3-(carboxymethyl)-4-o0x0-2-thioxothiazolidin-5-
ylidene) methyl)-9H-carbazole-9-yl)hexyl)-9H-carbazole-3-yl)methylene)-4-oxo-2-thioxo
thiazolidin-3-yl)acetic acid (DCH,)

A mixture of intermediate 9,9"-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2,

0.5 g, 1.058 mmol), rhodanine-3-acetic acid (0.24 g, 1.26 mmol), and ammonium acetate



(0.89 g, 11.6 mmol) and glacial acetic acid (5 mL) were taken in a RB flask and refluxed for
12 h under argon atmosphere. The completion of the reaction was monitored using the TLC
technique. After its completion, the reaction mixture was cooled to room temperature and
poured into ice-cold water. The solid obtained was filtered, washed with cold water, and
finally, dried. The crude product was recrystallized from absolute methanol to get the pure
product DCH, as a pale yellow solid. Yield: 86%. Melting point: 330-332 °C.

'"H NMR (400 MHz, DMSO-d¢, 8 ppm): 10.05 (s, 1H), 8.74 (s, 1H), 8.49-8.48 (d, 1H), 8.29-
8.27 (d, 2H), 8.06-8.05 (d, 1H), 7.96-7.94 (d, 1H), 7.74-7.71 (t, 4H), 7.64-7.62 (m, 2H), 7.53-
7.51 (t, 2H), 7.31-7.28 (t, 2H), 4.75 (m, 3H), 4.40 (m, 5H), 1.72-1.31 (m, 8H). 13C NMR (400
MHz, DMSO-dg, 6 ppm): 193.66, 192.29, 166.99, 143.95, 141.90, 141.20, 141.13, 129.03,
128.67, 127.30, 127.17, 127.04, 124.93, 124.46, 124.08, 123.45, 122.69, 122.64, 122.32,
121.38, 121.29, 120.57, 117.77, 110.99, 110.47, 110.18, 28.69, 26.43. Anal. Calcd. for
CpH3sN4O6Sy: C, 61.59; H, 4.18; N, 6.84 and found C, 61.32; H, 4.12; N, 6.82. FT-IR
(ATR), v cm™!: 2936 (C-H stretch), 2360 (C=N stretch), 1678 (C=0 stretch), 1577, 1494
(C=C), 1189 (C-N stretch). Mass (m/z): 818.14; Obtained (M-H): 817.25.

2.5.  Synthesis of (5Z,5'E)-5,5"-(9,9 -(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis
(methanylylidene))bis(2-thioxothiazolidin-4-one) (DCHj3)

A mixture of intermediate 9,9"-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2,
0.5 g, 1.058 mmol), rhodanine (0.16 g, 1.26 mmol), and ammonium acetate (0.89 g, 11.6
mmol) and glacial acetic acid (5 mL) were taken in a RB flask and refluxed for 12 h under
argon atmosphere. After the reaction completion, the reaction mixture was cooled to room
temperature and was poured into ice-cold water. The solid obtained was filtered, washed with
cold water, dried, and recrystallized using absolute methanol to get the pure product DCHj as
a pale yellowish-orange solid. Yield: 83%. Melting point: 294-296 °C.
TH NMR (400 MHz, DMSO-dg, 8 ppm): 10.05 (s, 1H), 8.75 (s, 1H), 8.41-8.40 (t, 1H), 8.33-
8.25 (m, 3H), 7.96-7.94 (dd, 1H), 7.83-7.82 (d, 1H), 7.71-7.70 (t, 2H), 7.64-7.63 (m, 4H),
7.51-7.49 (m, 2H), 7.31-7.27 (m, 2H), 4.40-4.38 (t, 4H), 1.71-1.30 (m, 8H). 3C NMR (400
MHz, DMSO-dg, 6 ppm): 196.16, 192.28, 170.05, 141.19, 141.08, 128.67, 127.15, 124.17,
123.36, 122.69, 122.64, 122.30, 121.28, 120.55, 120.39, 110.82, 110.44, 110.13, 28.67,
26.42. Anal. Calcd. for C53H;30N40,S4: C, 64.93; H, 4.30; N, 7.97 and found C, 64.90; H,
4.29; N, 7.96. FT-IR (ATR), v cm™': 3033, 2845 (C-H stretch), 2360 (C=N stretch), 1678



(C=0 stretch), 1572 (C=C), 1176 (C-N stretch). Mass (m/z): 702.13; Obtained (M-H):
701.10.

2.6.  Synthesis of 5,5'-((9,9"-(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis(methanyl
ylidene))bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione) (DCHy)

9,9’-(Hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2, 0.5 g, 1.058 mmol), was
dissolved in 10 mL of absolute methanol and to this mixture 1.2 eq of an active methylene
compound like 1,3-dimethylbarbituric acid (0.19 g, 1.26 mmol) was added under an argon
atmosphere and heated at 60 °C with stirring for 10 h. After completion of the reaction, the
content was cooled to room temperature, and precipitated solid was filtered, washed with
cold methanol, and collected. It was further recrystallized from the CHCI;-hexane mixture to
get the pure product DCHy as pale orange solid. Yield: 89%. Melting point: 202-204 °C.
TH NMR (400 MHz, DMSO-dg, 6 ppm): 9.27 (s, 2H), 8.75 (s, 1H), 8.61 (s, 1H), 8.33-8.28 (t,
2H), 7.96-7.95 (d, 2H), 7.73-7.64 (m, 3H), 7.52-7.50 (t, 3H), 7.31-7.30 (m, 2H), 4.41-4.37
(m, 12H), 4.05-4.01 (m, 4H), 1.99-0.83 (m, 8H). 3C NMR (400 MHz, DMSO-dg, & ppm):
160.06, 142.28, 141.09, 127.61, 127.13, 127.08, 125.89, 123.06, 122.55, 119.14, 114.43,
109.82, 107.84, 77.36, 77.24, 77.04, 76.72, 55.46, 47.80, 39.51, 31.01, 28.82, 24.42, 23.02,
14.03, 10.09. Anal. Calcd. for C44H49NgOg: C, 70.57; H, 5.38; N, 11.22 and found C, 70.50;
H, 5.39; N, 11.21. FT-IR (ATR), v cm!: 2944 (C-H stretch), 2360 (C=N stretch), 1661
(C=0 stretch), 1595, 1544, 1491 (C=C), 1158 (C-N stretch). Mass (m/z): 748.30; Obtained
(M-H): 747.25.

2.7.  Synthesis of 5,5"-((9,9"-(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis(methanyl
ylidene)) bis(pyrimidine-2,4,6(1H,3H,5H)-trione) (DCHs)

The intermediate 9,9’-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2, 0.5 g,
1.058 mmol), was dissolved in 10 mL of absolute methanol and to this mixture 1.2 eq of an
active methylene compound like barbituric acid (0.16 g, 1.26 mmol) was added under an
argon atmosphere and heated at 60 °C with stirring for 10 h. After completion of the reaction,
the content was cooled to room temperature, and the precipitated solid was filtered, washed
with cold methanol and collected. It was further recrystallized from the CHCl;-hexane
mixture to get the pure product DCHs as a red solid. Yield: 91%. Melting point: 214-216 °C.
TH NMR (400 MHz, DMSO-dg, 6 ppm): 11.31 (s, 2H), 11.19 (s, 2H), 9.29 (s, 2H), 8.75 (s,
1H), 8.62-8.60 (d, 1H), 8.52 (s, 1H), 8.33 (s, 1H), 8.18-8.17 (d, 2H), 7.72-7.64 (m, 5H), 7.52-



7.50 (t, 2H), 7.32-7.28 (m, 2H), 4.42-4.40 (t, 4H), 1.73-1.33 (m, 8H). 13C NMR (400 MHz,
DMSO-dg, 6 ppm): 164.70, 162.89, 157.33, 150.76, 143.53, 141.16, 133.76, 129.98, 127.17,
123.91, 122.84, 122.63, 120.98, 120.91, 114.55, 110.64, 109.66, 28.73, 26.44. Anal. Calcd.
for C49H3,NgOg: C, 69.35; H, 4.66; N, 12.13 and found C, 69.28; H, 4.60; N, 12.11. FT-IR
(ATR), v cm': 3192 (N-H stretch), 3047, 2840 (C-H stretch), 2333 (C=N stretch), 1664
(C=0 stretch), 1529, 1495 (C=C), 1183 (C-N stretch). Mass (m/z): 692.24; Obtained (M-H):
691.30.

2.8.  Synthesis of 5,5"-((9,9"-(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis(methanyl
ylidene)) bis(1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione) (DCHyg)

9,9’-(Hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2, 0.5 g, 1.058 mmol), was
dissolved in 10 mL of absolute methanol and to this mixture 1.2 eq of 1,3-diethyl-2-
thiobarbituric acid (0.25 g, 1.26 mmol) was added under argon atmosphere and heated at 60
°C with stirring for 10 h. After completion of the reaction, the content was cooled to room
temperature, and the precipitated solid was filtered, washed with cold methanol, and
collected. It was further recrystallized from the CHCl;-hexane mixture to get the pure product
DCHg as a bright orange solid. Yield: 86%. Melting point: 290-292 °C.
TH NMR (400 MHz, DMSO-dg, 6 ppm): 8.75 (s, 2H), 8.32-8.28 (d, 4H), 7.96-7.95 (m, 2H),
7.73-7.71 (m, 2H), 7.66-7.63 (m, 2H), 7.52-7.49 (t, 2H), 7.31-7.28 (t, 2H), 4.49-4.30 (m,
12H), 1.72 (m, 4H), 1.31-1.05 (m, 16H). 3C NMR (400 MHz, DMSO-d¢, 6 ppm): 162.89,
157.33, 150.76, 143.53, 141.16, 133.76, 129.98, 127.17, 123.91, 122.84, 122.63, 120.98,
120.91, 114.55, 110.64, 109.66, 28.73, 26.44. Anal. Calcd. for CygH4sN¢O4S,: C, 68.87; H,
5.78; N, 10.04 and found C, 68.91; H, 5.72; N, 10.01. FT-IR (ATR), v cm: 3109 (N-H
stretch), 2979, 2931 (C-H stretch), 2361 (C=N stretch), 1691 (C=0 stretch), 1531, 1497
(C=C), 1143 (C-N stretch). Mass (m/z): 836.32; Obtained (M-H): 835.20.

2.9.  Synthesis of (5Z,57E)-5,5"-(9,9 -(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis
(methanyl ylidene))bis(thiazolidine-2,4-dione) (DCH>)

A mixture of intermediate 9,9"-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2,
0.5 g, 1.058 mmol), 2,4-thiazolidinedione (0.14 g, 1.26 mmol), and ammonium acetate (0.89
g, 11.6 mmol) and glacial acetic acid (5 mL) were taken in an RB flask and refluxed for 12 h
under argon atmosphere. After the reaction completion, the reaction mixture was cooled to

room temperature and was poured into ice-cold water. The solid obtained was filtered,



washed with cold water, dried, and recrystallized using absolute methanol to get the pure
product DCHj as a pale yellow solid. Yield: 80%. Melting point: 328-330 °C.

'"H NMR (400 MHz, DMSO-dg, & ppm): 10.05 (s, 2H), 8.75 (s, 2H), 8.33-8.27 (m, 3H), 7.96-
7.94 (d, 2H), 7.71-7.62 (m, 5H), 7.52-7.49 (t, 2H), 7.31-7.28 (m, 2H), 4.40-4.38 (t, 4H), 1.70
(m, 4H), 1.49 (m, 4H). 3C NMR (400 MHz, DMSO-d¢, 8 ppm): 192.31, 143.94, 141.19,
127.17, 122.68, 121.30, 120.57, 110.48, 110.19, 69.91, 28.70, 26.43. Anal. Calcd. for
Ci33H3oN4O4S,: C, 68.04; H, 4.51; N, 8.35 and found C, 68.21; H, 4.56; N, 8.32. FT-IR
(ATR), v cm': 3143 (N-H stretch), 2943, 2902 (C-H stretch), 2360 (C=N stretch), 1678
(C=0 stretch), 1586, 1467 (C=C), 1171 (C-N stretch). Mass (m/z): 670.17; Obtained (M-H):
669.25.

2.10. Synthesis of (37,3'72)-3,3"-((9,9 -(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis
(methanylylidene))bis(indolin-2-one) (DCHg)

A mixture of 9,9’-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2, 0.5 g, 1.058

mmol), indolin-2-one (0.14 g, 1.26 mmol), and pipyridine (0.30 mL) were dissolved in
ethanol (5-10 mL) and stirred at room temperature for half an hour. Further, the reaction
mixture was refluxed at 80 °C for 12 h under an argon atmosphere. After the reaction
completion, the reaction mixture was cooled to room temperature and was poured into ice-
cold water. The solid obtained was filtered, washed with cold water, dried, and recrystallized
using absolute methanol to get the pure product DCHg as a brownish-red solid. Yield: 79%.
Melting point: 256-258 °C.
TH NMR (400 MHz, DMSO-dg, 6 ppm): 10.62-10.58 (m, 2H), 10.05-10.03 (t, 1H), 9.36-9.33
(t, 1H), 8.75-8.69 (m, 1H), 8.56 (s, 1H), 8.32-8.28 (m, 4H), 8.20-8.19 (m, 1H), 8.14-8.11 (m,
1H), 7.98-7.95 (m, 1H), 7.86-7.83 (m, 2H), 7.78-7.76 (d, 1H), 7.72-7.69 (m, 2H), 7.65-7.61
(m, 1H), 7.49-7.46 (t, 1H), 7.24-7.20 (m, 3H), 6.91-6.81 (m, 3H), 4.42-4.39 (t, 4H), 1.75 (m,
4H), 1.36 (m, 4H). 3C NMR (400 MHz, DMSO-dg, 6 ppm): 148.66, 148.29, 141.32, 140.28,
126.92, 126.27, 124.80, 122.06, 121.49, 118.12, 117.77, 110.31, 108.83, 107.56, 107.01,
76.32, 76.00, 75.68, 55.08, 55.03, 46.79, 38.49, 29.98, 27.78, 23.39, 21.99, 12.99, 9.87. Anal.
Calcd. for C43H33N4O,: C, 82.03; H, 5.45; N, 7.97 and found C, 81.98; H, 5.43; N, 7.98. FT-
IR (ATR), v cm': 3061 (N-H stretch), 2359 (C=N stretch), 1688 (C=0 stretch), 1588, 1467
(C=C), 1139 (C-N stretch). Mass (m/z): 702.30; Obtained (M-H): 701.35.



2.11. Synthesis of (2Z,2°7)-3,3"-(9,9"-(hexane-1,6-diyl)bis(9H-carbazole-9,3-diyl))bis(2-(4-
nitrophenyl)acrylonitrile) (DCHy)

A mixture of 9,9'-(hexane-1,6-diyl)bis(9H-carbazole-3-carbaldehyde) (2, 0.5 g, 1.058
mmol) and potassium tert-butoxide (0.58 g, 5.25 mmol) was dissolved in dry methanol (15
mL) and stirred at room temperature under an argon atmosphere for 15 min. Later, 4-
nitrophenyl acetonitrile (0.204 g, 1.26 mmol) was added while stirring and the reaction
mixture was refluxed for 6 h. The precipitate formed was filtered, washed with absolute
methanol, and finally, it was recrystallized from chloroform to obtain a brown solid. Yield:
89%. Melting point: 192-194 °C.
TH NMR (400 MHz, DMSO-dg, 8 ppm): 8.75 (s, 2H), 8.32-8.27 (m, 9H), 7.96-7.94 (dd, 2H),
7.72-7.62 (d, 5H), 7.52-7.49 (t, 3H), 7.31-7.28 (t, 3H), 4.41-4.38 (t, 4H), 1.71 (m, 4H), 1.38
(m, 4H). 13C NMR (400 MHz, DMSO-d¢, 8 ppm): 192.31, 143.94, 141.19, 128.66, 127.17,
122.63, 121.30, 120.57, 110.48, 110.19, 79.64, 42.84, 40.37, 40.23, 40.10, 39.96, 39.82,
39.68, 39.54, 28.70, 26.43. Anal. Calcd. for C4sH36NcOq4: C, 75.77; H, 4.77; N, 11.05 and
found C, 75.70; H, 4.75; N, 11.03. FT-IR (ATR), v cm!: 2942, 2826 (C-H stretch), 2207
(C=N stretch), 1680 (C=0 stretch), 1580, 1517 (C=C), 1172 (C-N stretch). Mass (m/z):
760.84; Obtained (M): 760.31.

3. Structural characterizations
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Figure S1. 'H-NMR spectrum of intermediate 1 recorded in CDCl3
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DFT studies on dye interaction with TiO, semiconductor

(a) (c)

0”28 .0 o 200 _ P
vr r 7- Vﬁ o ®% P4 ¢ : 4
3,,@ A \,, e, oy
X ‘f‘oﬁ ‘r("&)\ 0% 0% o9 ¢ G;‘ m 34

@ * ,e } '.‘ "l - (E@ rb L En Y L (O

L

Optimized geometry HOMO LUMO

Figure S41. (a) Optimized geometry, (b) HOMO, and (c) LUMO levels of DCH;-TiO, (101)
adduct; the isosurface value is 0.02045 e/A3.

To understand the adsorption as well as charge transfer mechanism in the presence of
a supporting substrate, density functional theory (DFT) calculations were performed using the
Vienna Ab inito Simulation Package (VASP). (6) To compute the exchange correlation
functional the generalized gradient approximation (GGA) of Perdew—Burke—Ernzerhof (PBE)
was used. (7) For geometry optimization we adopted an energy cut off of 450 eV. The
sampling over the Brillouin zone was done using a gamma-centered K mesh of size 5 x 5 x 1.
The partial occupancy near the Fermi level was treated using a Gaussian smearing
scheme. (8) An optimized bulk anatase TiO, was cleaved along the (101) surface and made a
supercell of size 2 x 2 x 1. A vacuum separation of 15 A was provided perpendicular to the
surface to eliminate the unphysical periodic image interactions. The van der Waals (vdW)
interaction between the DCH; and TiO,-(101) surface was modeled using the scheme of
Tkatchenko et al. (TS-method). (9) The optimized geometry of TiO,-(101)-DDC is shown
in Figure S41a. To analyze the charge transfer direction, we plotted the Kohn—Sham (KS)
wave function for the HOMO and LUMO (Figure S41 b and ¢) using the methodology of
Kamil et al. (10) In these simulations, the anchoring approach of DCH; on TiO, was selected
as it is shown to be the most stable adsorption mode for the carboxylic acid anchoring
group. (11-13) Typically, the electron transfer from the dye to the TiO, depends on the

relative symmetry, orientation of the orbitals, and electron density localized on the binding
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atoms. This possibly affects the rate and effectiveness of the recombination

process. (14) In Figure S41, the yellowish region depicts the electron-rich area whereas the

cyanish area corresponds to the electron deficit region. Careful observation of the HOMO
level of the adduct shows that the anchored oxygen has electron deficient (cyan color)
whereas the linked Ti atom has electron-rich (yellow) surroundings, indicating that, the
electron transfer takes place from the dye to the Ti atoms. At the same time, in the LUMO
there is still an appreciable charge density around the anchored oxygen atoms; hence, one can

argue that the electron transfer occurs via the HOMO level.

DCH, DCH,

07 i
o 10

%05 E‘U.B

2o, g

w0 gu.s

éo.a g 0.4

= =

go.z z N

01 -
300 320 2340 360 320 400 420 440 460 480 S00 520 540 560 580 600
nm

260 280 300 320 340 360 380 400 420 440 460
m

DCH, DCH,

e o o
w =

Oscillator strength
o
i

Oscillator strength
o
o

o
-

0.2 \
\~

320 340 360 380 400 420 440 460 480 S00 S20 540 S60 580 600 300 320 340 2360 380 400 420 440 460 480 5S00 520 540
nm nm

&4

DCH,€ DCH,

o
in

~ 06
Fos

jth

o
=
Fen

7 04

=)
w
o S

So3
\ go2
‘ ‘ \ 01

300 320 340 360 380 400 420 440 460 480 S00 S20 540
nm

o
X
flla

Oscillator strength

o
=

Osi

340 360 380 400 420 440 460 480 500 520 540 S60 580
nm

DCH DCH,
7 250 P

10 %

09 = 200
£ 08 =
) =
go7 210
Los 7
= 05 z
5 £ w0
Z 04 g
Lk g
Coz 50

01 -

|

280 200 320 340 360 30 400 420 440 460 480 S00 S20 B0 400 450 500 550 600 650 700
nm


javascript:void(0);
https://pubs.acs.org/doi/full/10.1021/acs.jpcc.9b06525#fig4
https://pubs.acs.org/doi/full/10.1021/acs.jpcc.9b06525#fig4
https://pubs.acs.org/doi/full/10.1021/acs.jpcc.9b06525#fig4

=,
=
F 1,500
£ 1000
500
0
2,500
T 2000
<
£ 1,500
Ev
=z
& 1,000
]
£
= 500
o

ot -

340 360 380

400 420 440 460 480 S00 520 540 560 SB0 600

Figure S42. Simulated electronic excitation spectra of DCHj_9
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Figure S43. Theoretically obtained FT-IR spectra of DCH;.9
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Procedure for calculation of molar extinction coefficient

In the present study, the molar extinction coefficients of molecules DCH;qy were
determined according to Lambert-Beer law A= ecl where, 4 is Absorbance, ¢ is molar
absorption coefficient, ¢ is molar concentration, / is optical path length and is usually 1 cm).
The stock solutions of DCHy.¢ were prepared in chloroform medium at a concentration of 10-
> M and were further diluted to five different concentrations. The absorbance of the samples
was recorded at their corresponding A.s (absorption maxima) using an Analytik Jena
SPECORD S 600 spectrophotometer. The obtained absorbance values were plotted versus

their molar concentrations. The slope of the graph indicates the molar extinction coefficient.
(3]
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Figure S45. DSC plots of dyes DCH; 9
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Figure S47. FTIR spectra of dyes DCH,_¢ along with HD-2 adsorbed on TiO, surface

Table S1. Summary of dyes with similar molecular design along with their efficiency
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Figure S48. IPCE spectra of DSSCs sensitized with HD-2 alone and co-sensitized using
DCH,4 and their integrated currents.
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Figure S49. EIS spectra of devices sensitized with HD-2 alone (Nyquist plots, and Bode

phase plots) along with equivalent circuit used for devices

S1+HD-2 S2+HD-2 S3+HD-2 S4+HD-2 | S5+HD-2 | S6+HD-2 S7+HD-2 S8+HD-2 = S9+HD-2
Rh/Q cm—2 21.18 28.46 20.28 18.52 23.81 21.6 19.83 21.2 19.71
RCT/Q
cm—2 3.858 4.103 3.63 3.164 2.691 11.63 3.338 14.79 13.55
nl 0.964 8 0.946 0.966 2 0.942 6 0.9999 | 0.998 6 0.9986 | 0.7874 0.8421
CPE1/Sn 1.15E- | 0.354 7e- 0.809
cm—2 1.43E-05 | 1.74E-05 | 1.60E-05 | 1.99E-05 05 3 9.16E-06 8e-3 0.606 4e-3
RPt/Q
cm—2 15.79 13.59 15.76 13.96 14.76 5.249 1.44E+01 | 3.967 3.915

8.71E- 9.63E-

n2 0.856 8 0.8336 0.7779 0.8196 01 0.796 6 0.8313 01 0.973 4
CPE2/Sn 0.521 8e- 0.631 9e- 0.419 0.617 le- | 1.34E-
cm—2 0.505 7e-3 3 0.504 1le-3 3 4e-3 8.28E-05 3 05 1.25E-05

Table S2. EIS parameters of devices co-sensitized with HD-2 using DCHj.9




Device fabrication procedures

TiO; electrode preparation and device fabrication using new dyes DCH|_g as sensitizers

Fluorine-doped tin oxide (FTO) coated glasses (thickness: 2.2 mm; sheet resistance: 8
Q/cm?; from TEC, Pilkington) were gently washed with a soap solution, distilled water,
acetone, and ethanol in that order. After washing, the FTO glasses were immersed in a 40
mM aqueous solution of TiCls (from Wako Pure Chemical Industries, Ltd) at 70 °C for 30
minutes. Once cooled, the glasses were rinsed with water and ethanol. Next, a thin layer of
TiO: paste (Solaronix, Ti-Nanoxide D/SP) with a thickness of approximately 8-10 um was
coated onto the transparent substrates (active area: 0.18 cm?) using a screen printer. The
coated substrates were then dried at 350 °C for 10 minutes and annealed at 500 °C for 30
minutes to serve as a seed layer. After the electrodes dried, a scattering layer of TiO: particles
(5 um thick) was screen-printed onto the previously deposited TiO: layer and subsequently
annealed at 350 °C for 10 minutes, followed by another annealing at 500 °C for 30 minutes.
Upon reaching room temperature, the TiO: electrodes were treated with a 40 mM aqueous
TiCls solution at 70 °C for 30 minutes, then rinsed with water and ethanol to fill in the
defective "pinholes" present in the TiO: layer. Before immersing the electrodes in the dye
solution, they were annealed once more at 500 °C for 30 minutes and allowed to cool to 80
°C. To prepare the dye solution, 0.2 mM solutions of DCH;¢ were made by dissolving the
dye in a 10 mL mixture of acetonitrile, tert-butanol, and dimethyl sulfoxide (DMSO) in equal
parts. Chenodeoxycholic acid (CDCA) was added to achieve a concentration of 20 mM. The
hot electrodes were then immersed in the dye solutions and kept at room temperature for 20

hours to enhance adsorption onto the TiO: surface.

To prepare the counter electrode, pre-cut transparent conductive oxide (TCO) glass
slides were first washed with distilled water, followed by a treatment with a 0.1 M HCI
solution in ethanol. After this, the slides were sonicated in an acetone bath for 15 minutes.
Once cleaned, the TCO glasses were dried at 400 °C for 15 minutes. Next, a thin layer of
platinum paste (Solaronix, Plastisol T/SP) was uniformly applied to the TCO surface. The
electrodes were then annealed at 450 °C for 10 minutes. Finally, the dye-sensitized TiO2
electrodes were sandwiched between the platinum counter electrodes. A liquid electrolyte
(Solaronix, lodolyte HI-30) was injected into the cell while the two electrodes were held

together with clips.



TiO; electrode preparation and device fabrication using new dyes DCH|_gas co-sensitizers

Fluorine-doped tin oxide (FTO) coated glasses (thickness: 2.2 mm, sheet resistance: 8
Q/cm?, TEC, Pilkington) were gently washed with a soap solution, distilled water, acetone,
and ethanol in that order. After washing, the FTO glasses were immersed in a 40 mM
aqueous TiCls solution (Wako Pure Chemical Industries, Ltd) at 70 °C for 30 minutes. Once
cooled, the glasses were rinsed with water and ethanol. Next, a thin layer of TiO: paste
(Solaronix, Ti-Nanoxide D/SP) approximately 8-10 um thick was coated on the transparent
substrates (active area: 0.18 cm?) using a screen printer. This was followed by drying at 350
°C for 10 minutes and annealing at 500 °C for 30 minutes to create a seed layer. After the
electrodes had dried, a scattering layer of TiO: particles, 5 um thick, was applied to the
previously deposited TiO: layer and annealed first at 350 °C for 10 minutes and then at 500
°C for 30 minutes. Once at room temperature, the TiO: electrodes were treated again with the
40 mM aqueous TiCls solution at 70 °C for 30 minutes, followed by rinsing with water and
ethanol. This treatment helps to fill the defective pinholes present in the TiO: layer. Before
immersing the electrodes in the dye solution, they were annealed once more at 500 °C for 30
minutes and allowed to cool to 80 °C. The dye solutions were prepared by dissolving HD-2
(0.2 mM) and DCH1-9 (0.2 mM) in a 10 mL mixture of acetonitrile, tert-butanol, and
dimethyl sulfoxide (DMSO) in a 1:1:1 ratio. Additionally, chenodeoxycholic acid (CDCA)
was added at a concentration of 20 mM. The hot electrodes were immersed in the dye
solutions and left at room temperature for 20 hours to enhance adsorption onto the TiO-

surface.

To prepare the counter electrode, pre-cut TCO (Transparent Conductive Oxide)
glasses were first washed with distilled water, then treated with a 0.1 M HCI solution in
ethanol, and subsequently subjected to sonication in an acetone bath for 15 minutes. After
cleaning, the TCO glasses were dried at 400 °C for 15 minutes. A thin layer of Pt-paste
(Solaronix, Plastisol T/SP) was applied uniformly onto the TCO. The electrodes were then
annealed at 450 °C for 10 minutes. Next, the dye-sensitized TiO2 electrodes were
sandwiched between the Pt counter electrodes. Liquid electrolyte (Solaronix, lodolyte HI-30)

was injected into the cell while the two electrodes were held together with clips.
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