Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting information

## Tailoring Intraband Transition via Composition in Self-doped Ag<sub>2</sub>S<sub>x</sub>Se<sub>y</sub> Alloy Nanocrystals

Youngjo Choi<sup>†</sup>, Haemin Song<sup>‡</sup>, Gyu Ho Song<sup>†</sup>, Hee Kwon Kim<sup>†</sup>, Yoon Seo Jung<sup>‡</sup>, Hyeong Seok Kang<sup>‡</sup>, Woong Kim<sup>\*,†,a</sup> and Kwang Seob Jeong<sup>\*‡</sup>

<sup>†</sup>Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

<sup>a</sup>Department of Semiconductor System Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

‡Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

## AUTHOR INFORMATION

## **Corresponding Author**

\*E-mail: woongkim@korea.ac.kr (W. Kim)

\*E-mail: <u>kwangsjeong@korea.ac.kr</u> (K. S. Jeong)

## **Table of Contents**

Fig. S1. The TEM images of the  $Ag_2S_xSe_y$  nanocrystals with various sulfur contents: (a)  $Ag_2Se_{0.75}$ , (b)  $Ag_2S_{0.07}Se_{0.79}$ , (c)  $Ag_2S_{0.17}Se_{0.61}$ , (d)  $Ag_2S_{0.67}Se_{0.15}$ , and (e)  $Ag_2S_{0.81}$  (scale bars = 10 nm).

**Table S1.** The crystal sizes of the various  $Ag_2S_xSe_y$  nanocrystals.

Fig. S2. A photographic image of the  $Ag_2S_{0.23}Se_{0.51}$  nanocrystals dispersed in toluene.

Fig. S3. The XPS survey spectra of the various  $Ag_2S_xSe_y$  nanocrystals.

Fig. S4. The fitting results of XPS spectra of S 2p and Se 3p region of the various  $Ag_2S_xSe_y$  nanocrystals.

Fig. S5. The fitting results of XPS spectra of Ag 3d region of the various  $Ag_2S_xSe_y$  nanocrystals.

**Table S2.** The peak locations of XPS spectra (Se 3p, S 2p, and Ag 3d) of the various  $Ag_2S_xSe_y$  nanocrystals.

Fig. S6. The absorption spectra of the  $Ag_2S_xSe_y$  nanocrystals fitted with Gaussian curves.

Fig. S7. The trends in the intraband and band gap transitions of the  $Ag_2S_{0.23}Se_{0.51}$  nanocrystals at various SEC potentials.

**Fig. S8.** The differential absorption spectra of (a) the  $Ag_2S_{0.09}Se_{0.75}$  and (b) the  $Ag_2S_{0.23}Se_{0.62}$  nanocrystals under various electrochemical potentials, as obtained from the SEC measurements.



Fig. S1. The TEM images of the  $Ag_2S_xSe_y$  nanocrystals with various sulfur contents: (a)  $Ag_2Se_{0.75}$ , (b)  $Ag_2S_{0.07}Se_{0.79}$ , (c)  $Ag_2S_{0.17}Se_{0.61}$ , (d)  $Ag_2S_{0.67}Se_{0.15}$ , and (e)  $Ag_2S_{0.81}$  (scale bars = 10 nm).

|           | $Ag_2Se_{0.75}$ | $Ag_2S_{0.07}Se_{0.79}$         | $Ag_2S_{0.17}Se_{0.61}$ | $Ag_2S_{0.24}Se_{0.49}$         | $Ag_2S_{0.53}Se_{0.35}$ | $Ag_{2}S_{0.67}Se_{0.15}$       | $Ag_{2}S_{0.81}$              |
|-----------|-----------------|---------------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|-------------------------------|
| Size (nm) | $6.3\pm0.9$     | $\textbf{6.2} \pm \textbf{0.7}$ | $6.5 \pm 0.8$           | $\textbf{6.4} \pm \textbf{0.6}$ | $5.9 \pm 1.3$           | $\textbf{6.2} \pm \textbf{1.1}$ | $\textbf{6.2}\pm\textbf{0.8}$ |

Table S1. The crystal sizes of the various  $Ag_2S_xSe_y$  nanocrystals.



Fig. S2. A photographic image of the  $Ag_2S_{0.23}Se_{0.51}$  nanocrystals dispersed in toluene.



**Fig. S3.** The XPS survey spectra of the various  $Ag_2S_xSe_y$  nanocrystals.



Fig. S4. The fitting results of XPS spectra of S 2p and Se 3p region of the various  $Ag_2S_xSe_y$  nanocrystals.



Fig. S5. The fitting results of XPS spectra of Ag 3d region of the various  $Ag_2S_xSe_y$  nanocrystals.

|                           | $Ag_2Se_{0.75}$ | Ag <sub>2</sub> S <sub>0.07</sub> Se <sub>0.79</sub> | Ag <sub>2</sub> S <sub>0.17</sub> Se <sub>0.6</sub> | $Ag_2S_{0.24}Se_{0.49}$ | $Ag_2S_{0.53}Se_{0.35}$ | Ag <sub>2</sub> S <sub>0.67</sub> Se <sub>0.1</sub><br>5 | $Ag_{2}S_{0.81}$ |
|---------------------------|-----------------|------------------------------------------------------|-----------------------------------------------------|-------------------------|-------------------------|----------------------------------------------------------|------------------|
| Se 3p <sub>1/2</sub> (eV) | 165.3           | 165.3                                                | 165.4                                               | 165.4                   | 165.3                   | 165.4                                                    | -                |
| Se 3p <sub>3/2</sub> (eV) | 159.4           | 159.5                                                | 159.4                                               | 159.5                   | 159.5                   | 159.5                                                    | -                |
| S 2p <sub>1/2</sub> (eV)  | -               | 161.9                                                | 161.8                                               | 161.9                   | 161.9                   | 161.8                                                    | 161.9            |
| S 2p <sub>3/2</sub> (eV)  | -               | 160.9                                                | 160.8                                               | 160.9                   | 160.9                   | 160.8                                                    | 160.8            |
| Ag 3d <sub>3/2</sub> (eV) | 373.4           | 373.4                                                | 373.4                                               | 373.3                   | 373.8                   | 373.8                                                    | 373.7            |
| Ag 3d <sub>5/2</sub> (eV) | 367.4           | 367.4                                                | 367.4                                               | 367.3                   | 367.8                   | 367.8                                                    | 367.7            |

**Table S2.** The peak locations of XPS spectra (Se 3p, S 2p, and Ag 3d) of the various  $Ag_2S_xSe_y$  nanocrystals.



Fig. S6. The absorption spectra of the  $Ag_2S_xSe_y$  nanocrystals fitted with Gaussian curves.



Fig. S7. The trends in the intraband and band gap transitions of the  $Ag_2S_{0.23}Se_{0.51}$  nanocrystals at various SEC potentials.



Fig. S8. The differential absorption spectra of (a) the  $Ag_2S_{0.09}Se_{0.75}$  and (b) the  $Ag_2S_{0.23}Se_{0.62}$  nanocrystals under various electrochemical potentials, as obtained from the SEC measurements.