Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Switching the heavy-atom effect in blue thermally

activated delayed fluorescence emitters

Jan Szumilas, Chi Hyun Ryoo, Michał Mońka, Piotr Bojarski, Soo Young Park,*

Illia E. Serdiuk*

Contents

Additional PL spectra Quantum chemical calculations Effect of concentration of emitter ¹H and ¹³C NMR spectra

Additional PL spectra

Figure S1. Steady state emission spectra in ZNX (A) and PMMA (B), neat (C), DPEPO (D),

and PVP (E) films.

Figure S2. Time-resolved emission spectra of **TNOPh-DMAC** (A), **TNSPh-DMAC** (B), and **TNSePh-DMAC** (C) in doped PMMA films.

Figure S3. Time-resolved emission spectra for the investigated compounds in various media at 10K: **TNOPh-DMAC** (A, D), **TNSPh-DMAC** (B, E) and **TNSePh-DMAC** (C, F).

Figure S4. Emission decays in various media at room temperature (RT) under vacuum in PMMA and neat films.

temperatures.

Quantum chemical calculations

Rotational isomerism

DFT calculations revealed two distinct local minima for all investigated compounds, differentiated by the dihedral angle between the phenyl group and chalcogen-*s*-triazine fragment. As such, geometry optimization and orbital calculations have been performed for both group A (phenyl ring oriented towards donor fragment) and B (phenyl ring oriented away from the donor fragment). In optimal structures, such an dihedral angle α equals 59° (A) and 55° (B) in TNOPh-DMAC, and 90° in both configurations of TNSPh-DMAC and TNSePh-DMAC

The influence of the dihedral angle θ between the acceptor and donor fragments has been taken into account to estimate the influence of the ³CT-¹CT transitions. As follows from the previous studies,^{S1} the electronic features of the rotational isomer with $\theta = 82^{\circ}$ reflects well the statistical sum of such θ rotamers. The parameters of the ³CT-¹CT transition is presented thus for respective geometries with a fixed $\theta = 82^{\circ}$.

TNOPh-DMAC

Figure S6. Natural transition orbitals and SOC constants of selected low-energy transitions in **TNOPh-DMAC**.

Figure S7. Natural transition orbitals and SOC constants of selected low-energy transitions in TNSPh-DMAC.

Figure S8. Natural transition orbitals and SOC constants of selected low-energy transitions in **TNSePh-DMAC**.

Table S1. TD-DFT predicted SOC constants for the $T_2(^3LE)$ -S₀ and $T_1(^3CT)$ -S₀ transitions.

Compound	TNOPh-DMAC		TNSPh	-DMAC	TNSePh-DMAC		
State	$T_1(^{3}CT)$	T_2 (³ LE)	T_1 (³ CT)	T_2 (³ LE)	T_1 (³ CT)	T_2 (³ LE)	
SOC [cm ⁻¹]	2.1	0.1	2.0	0.1	1.4	0.1	

Compound	Config.	HOMO [eV]	LUMO [eV]	³ LE- ¹ CT			³ CT- ¹ CT		
				λ [eV]	<i>∆E</i> [eV]	SOC [10 ⁻⁴ eV]	λ [eV]	<i>∆E</i> [eV]	SOC [10 ⁻⁶ eV]
TNOPh-DMAC	А	-4.97	-1.96	0.25	0.595	1.2	0.025	0.032	11.2
TNSPh-DMAC	А	-4.97	-1.97	0.23	0.571	1.1	0.021	0.027	9.9
TNSePh-DMAC	А	-4.97	-1.96	0.27	0.452	6.8	0.024	0.029	8.8
TNOPh-DMAC	В	-5.01	-2.00	0.26	0.608	1.2	0.023	0.030	10.0
TNSPh-DMAC	В	-5.00	-2.00	0.24	0.585	1.2	0.021	0.028	9.9
TNSePh-DMAC	В	-4.99	-1.98	0.24	0.577	1.2	0.017	0.024	4.1

Table S2. Selected electronic parameters for A and B configurations.

Effect of concentration of emitter

Figure S9. PL decay curves at different concentration of emitter in DPEPO host: A - TNSPh-DMAC and B - TNSePh-DMAC

Table S3. Summary of photophysical parameters in neat films and **TNSPh-DMAC** doped DPEPO film.

Compound	Conc. w/w	PL _{max} [nm]	τ _{PF} [ns]	$ au_{ m DF}$ [µs]	PLQY [%]	$k_{\rm r}$ [10 ⁷ , s ⁻¹]	$k_{\rm ISC}$ [10 ⁷ , s ⁻¹]	$k_{\rm nr}$ [10 ⁷ , s ⁻¹]	k_{rISC} [10 ⁴ , s ⁻¹]
TNOPh-DMAC	100% (neat)	480	12.5	6.6	59	2.8	3.2	2.0	25
TNSPh-DMAC	100% (neat)	478	8.7	5.7	52	2.3	3.5	2.3	25
TNSePh-DMAC	100% (neat)	483	12.8	3.8	49	2.8	2.1	2.9	36
TNSPh-DMAC	10%	494	15.1	58	67	1.7	4.1	0.8	4.5

TNSPh-DMAC

TNSePh-DMAC

¹³C NMR spectra in CDCl₃

TNOPh-DMAC

TNSPh-DMAC

References

[[]S1] Ryoo, C. H.; Han, J.; Yang, J.-H.; Yang, K.; Cho, I.; Jung, S.; Kim, S.; Jeong, H.; Lee, C.; Kwon, J. E.; Serdiuk, I. E.; Park, S. Y. Systematic Substituent Control in Blue Thermally Activated Delayed Fluorescence (TADF) Emitters: Unraveling the Role of Direct Intersystem Crossing between the Same Charge-Transfer States. *Adv. Optical Mater.* 2022, *10*, No. 2201622.