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Additional PL spectra 
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ZNX emission spectra
A)
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PMMA emission spectra
B)
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 Neat film emission spectra
C)
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DPEPO emission spectra
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Figure S1. Steady state emission spectra in ZNX (A) and PMMA (B), neat (C), DPEPO (D), 

and PVP (E) films.
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Figure S2. Time-resolved emission spectra of TNOPh-DMAC (A), TNSPh-DMAC (B), and 

TNSePh-DMAC (C) in doped PMMA films.
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TNOPh-DMAC 10K emission spectra
A)

400 450 500 550 600 650
0,0

0,2

0,4

0,6

0,8

1,0

N
or

m
liz

ed
 e

m
is

si
on

 in
te

ns
ity

Wavelength (nm)

ZNX
 PF, 2-100 ns
 Phosphorescence, 10 ms

PMMA
 PF, 2-100 ns
 Phosphorescence, 10 ms

TNSPh-DMAC 10K emission spectra
B)
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Figure S3. Time-resolved emission spectra for the investigated compounds in various media 

at 10K: TNOPh-DMAC (A, D), TNSPh-DMAC (B, E) and TNSePh-DMAC (C, F).
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Figure S4. Emission decays in various media at room temperature (RT) under vacuum in 

PMMA and neat films.

  

Figure S5. Emission decays in various media at various 
temperatures.



Quantum chemical calculations

Rotational isomerism

DFT calculations revealed two distinct local minima for all investigated compounds, 

differentiated by the dihedral angle between the phenyl group and chalcogen-s-triazine 

fragment.  As such, geometry optimization and orbital calculations have been performed for 

both group A (phenyl ring oriented towards donor fragment) and B (phenyl ring oriented away 

from the donor fragment). In optimal structures, such an dihedral angle α equals 59° (A) and 

55° (B) in TNOPh-DMAC, and 90° in both configurations of TNSPh-DMAC and TNSePh-

DMAC

The influence of the dihedral angle θ between the acceptor and donor fragments has 

been taken into account to estimate the influence of the 3CT-1CT transitions. As follows from 

the previous studies,S1 the electronic features of the rotational isomer with θ = 82o reflects well 

the statistical sum of such θ rotamers. The parameters of the 3CT-1CT transition is presented 

thus for respective geometries with a fixed θ = 82o.



Molecular orbitals and SOC constants

Figure S6. Natural transition orbitals and SOC constants of selected low-energy transitions in 
TNOPh-DMAC.



 

Figure S7. Natural transition orbitals and SOC constants of selected low-energy transitions in 
TNSPh-DMAC.



 Figure S8. Natural transition orbitals and SOC constants of selected low-energy transitions 
in TNSePh-DMAC.



Table S1. TD-DFT predicted SOC constants for the T2(3LE)-S0 and T1(3CT)-S0  transitions.

Compound TNOPh-DMAC TNSPh-DMAC TNSePh-DMAC
State T1 (3CT) T2 (3LE) T1 (3CT) T2 (3LE) T1 (3CT) T2 (3LE)

SOC [cm-1] 2.1 0.1 2.0 0.1 1.4 0.1

Table S2. Selected electronic parameters for A and B configurations.
3LE-1CT 3CT-1CT

Compound Config. HOMO
[eV]

LUMO
[eV] λ [eV] ΔE [eV] SOC   

[10-4 eV] λ [eV] ΔE [eV] SOC
 [10-6 eV]

TNOPh-DMAC A -4.97 -1.96 0.25 0.595 1.2 0.025 0.032 11.2
TNSPh-DMAC A -4.97 -1.97 0.23 0.571 1.1 0.021 0.027 9.9
TNSePh-DMAC A -4.97 -1.96 0.27 0.452 6.8 0.024 0.029 8.8
TNOPh-DMAC B -5.01 -2.00 0.26 0.608 1.2 0.023 0.030 10.0
TNSPh-DMAC B -5.00 -2.00 0.24 0.585 1.2 0.021 0.028 9.9
TNSePh-DMAC B -4.99 -1.98 0.24 0.577 1.2 0.017 0.024 4.1



Effect of concentration of emitter

Figure S9. PL decay curves at different concentration of emitter in DPEPO host: A - TNSPh-
DMAC and B - TNSePh-DMAC

Table S3. Summary of photophysical parameters in neat films and TNSPh-DMAC doped 
DPEPO film.

Compound Conc.
w/w

PLmax 
[nm]

τPF
 [ns]

τDF [µs] PLQY 
[%]

kr 

[107, s-1]

kISC 

[107, s-1]

knr 

[107, s-1]

krISC 

[104, s-1]

TNOPh-DMAC 100% (neat) 480 12.5 6.6 59 2.8 3.2 2.0 25

TNSPh-DMAC 100% (neat) 478 8.7 5.7 52 2.3 3.5 2.3 25

TNSePh-DMAC 100% (neat) 483 12.8 3.8 49 2.8 2.1 2.9 36

TNSPh-DMAC 10% 494 15.1 58 67 1.7 4.1 0.8 4.5



1H NMR spectra in CDCl3
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13C NMR spectra in CDCl3
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