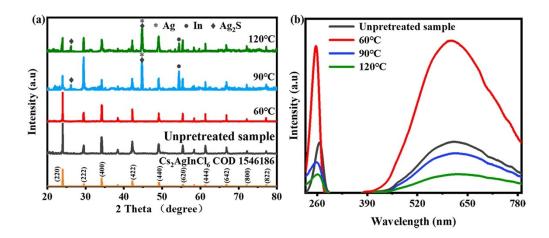
Supporting Information

$Highly\ Efficient\ Orange\ Luminescence\ in\ Sn^{2+}\text{-}doped\ Cs_2AgInCl_6$

Double Perovskite with Large Stokes Shift


Jingrui Guo, ^{©ab} Jing Guo, *^{© ab} Yuchen Peng, ^{ab} Jiajia Wang, ^{ab} Weidan Ma, ^{ab} Na Zhang, ^{ab}
Yan Zhang, ^{ab} Yufeng Liu, *^{ab} Yongzheng Fang *^{ab}

a. School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China.

b. Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai 201800, People's Republic of China.

^{*}E-mail: guoj@sit.edu.cn, yfliu@mail.sitp.ac.cn, fyz1003@sina.com

These authors contributed equally to this work and should be considered cofirst authors.

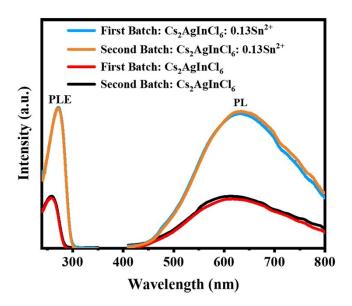
Figure S1. (a) XRD pattern of Cs₂AgInCl₆ prepared under different temperatures. (b) PL and PLE spectra of Cs₂AgInCl₆ corresponding to (a).

Peaks belongs to Ag₂S appears while treated temperature is 90 °C and 120 °C. As for how Ag₂S is produced, we infer that the reaction process maybe like this:

Firstly, DMSO could decompose under acid condition over 80 °C

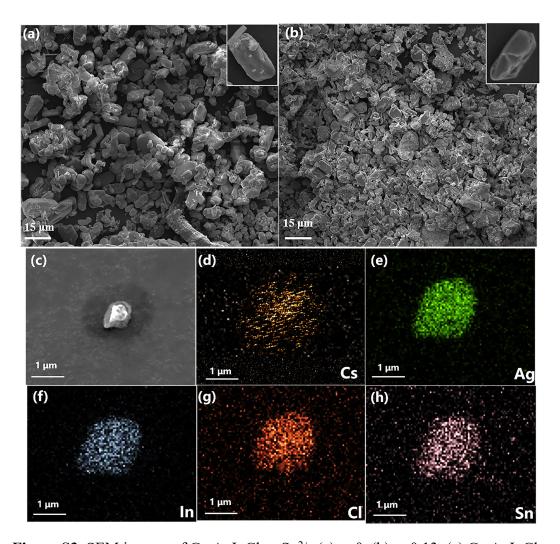
$$(CH_3)_2 SO \xrightarrow{\Delta, H^+} CH_2 O + CH_4 S \tag{S1}$$

The CH₄S produced by decomposition can react with DMSO continually:


$$2CH_4S + (CH_3)_2SO \xrightarrow{\Delta, H^+} CH_3S_2CH_3 + CH_3SCH_3 + H_2O$$
 (S2)

The CH₃SCH₃ in this process will react with H₂O and obtain H₂S:

$$CH_3SCH_3 + 2H_2O \xrightarrow{\Delta, H^+} 2CH_3OH + H_2S$$
 (S3)


Due to the solubility of Ag_2S is less than that of AgCl and finally produced Ag_2S in the samples prepared at 90 °C and 120 °C.

$$2AgCl + H_2S \xrightarrow{\Delta, H^+} Ag_2S\downarrow + 2HCl$$
 (S4)

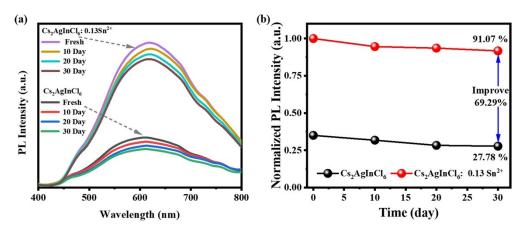


Figure S2. Spectral comparison of Cs₂AgInCl₆ and Cs₂AgInCl₆: 0.13Sn²⁺ prepared in two different batches.

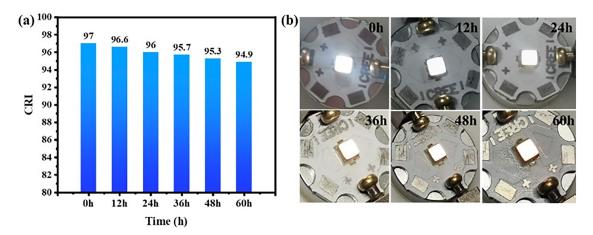

Reproducibility is very important for sample preparation. Take Cs₂AgInCl₆ and Cs₂AgInCl₆: 0.13Sn²⁺ prepared in two batches as an example, the PLE and PL spectra of them in figure S2 shows the same shape, the excitation and emission wavelength of Cs₂AgInCl₆ are 257 nm and 612 nm while Cs₂AgInCl₆: 0.13Sn²⁺ are 257nm and 619 nm, respectively. Importantly, the intensity of peaks in different batches is closely, indicating the well reproducibility of synthesis method. The important point needs to be emphasized in Cs₂AgInCl₆: *x*Sn²⁺ fabrication is the dissolution process. The solution must be transparent and clear when transferred to the autoclave, after chemicals added into DMSO and HCl under vigorously stirring at room temperature (25 °C) for 2 h.

Figure S3. SEM images of $Cs_2AgInCl_6$: xSn^{2+} , (a) x=0, (b) x=0.13. (c) $Cs_2AgInCl_6$: $0.13Sn^{2+}$ particle in (b). (d)-(h) are elemental mapping of (c).

Figure S4. (a) PL spectra of Cs₂AgInCl₆ and Cs₂AgInCl₆: 0.13Sn²⁺ after stored for different time. (b) PL peak change corresponding to (a).

Figure S5. (a) The CRI of WLED after exposed to air for 60 h in 12 h increments. (b) Pictures of package WLED corresponding to (a).

The CRI of the packaged WLED was tested in 12 h increments while the device is directly exposed to the air, as shown in figure S5. 60 h later, the CRI of the WLED is 94.9, which is 97.8% remained compared to the initial value, also is much higher than all of the samples in table S4.

Table S1. The position of PL and PLE peaks of Cs₂AgInCl₆ under different hydrothermal treatment temperatures.

Preparation conditions of samples	PLE peak /nm	PL peak /nm	Stokes shift /nm	
Unpretreated	266	617	351	
60 °C	257	611	354	
90 °C	259	616	357	
120 °C	261	624	363	

Table S2. ICP-OES results of $Cs_2AgInCl_6$: xSn^{2+} (x represents the mass concentration ratios between Sn^{2+} and In^{3+}).

Sample	ICP-OES			
	In(mg/L)	Sn(mg/L)	x	
Cs ₂ AgInCl ₆ : xSn ²⁺	465.98	61.02	0.13	
	424.48	108.60	0.26	
	310.53	115.88	0.37	

Table S3. Photoluminescence spectroscopic analysis for Cs₂AgInCl₆: xSn²⁺.

Samples	PLE peak /nm	PL peak /nm	Stokes shift /nm	
Cs ₂ AgInCl ₆	257	612	355	
Cs ₂ AgInCl ₆ : 0.13Sn ²⁺	257	619	362	
Cs ₂ AgInCl ₆ : 0.26Sn ²⁺	257	618	361	
Cs ₂ AgInCl ₆ : 0.37Sn ²⁺	257	617	360	

Table S4. Comparison between different ions doped Cs₂AgInCl₆ and this work.

	Materials	Stokes shift /nm	PLQY /%	CIE	CCT /K	Ra	Ref
Single element doping	Cs ₂ AgInCl ₆ :30%Bi ³⁺	-	4	(0.36,0.35)	4443	91	S1
	Cs ₂ AgInCl ₆ : Bi	212	11.4	-	-	-	S2
	Cs ₂ AgInCl ₆ : 1.5%Mn	330	16	-	-	-	S3
	Cs ₂ AgIn _{0.833} Bi _{0.176} Cl ₆	260	39	-	3119	85	S4
Co- doping	Cs ₂ (Ag/Na)InCl ₆ : 1.0%Cu ⁺	240	62.6	(0.374,0.380)	4060	86	S5
	Cs ₂ AgInCl ₆ : Bi-Sm	-	13.04	(0.535,0.440)	2000	82	S6
	Cs ₂ Ag _{0.7} Na _{0.3} InCl ₆ : Bi	-	87.2	(0.38,0.44)	4347	87.8	S7
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	245	32.7	(0.44,0.41)	2953	88.7	S8
This Work	Cs ₂ AgInCl ₆ : 0.13Sn ²⁺	363	29	(0.370,0.367)	4210	97	-

Table S4 summarized the properties of some other doping works on single element doping and two elements co-doping in Cs₂AgInCl₆, including material properties (PLQY and Stokes shift) and WLED properties (CIE, CCT, Ra). The Stokes shift and PLQY of Cs₂AgInCl₆: 0.13Sn²⁺ is much larger than most of the other samples. The specifications of the WLED device are more optimal than all the other works. It can be found that the overall performance, no matter material and the WLED device, Cs₂AgInCl₆: 0.13Sn²⁺ is relatively excellent than many other works. These results positioned the findings within the broader field and highlight the specific advantages of Sn²⁺ doping.

Reference

- S1. D. Manna, T. K. Das and A. Yella, Chem. Mater., 2019, 31, 10063.
- S2. Y. Liu, Y. Jing, J. Zhao, Q. Liu and Z. Xia, Chem. Mater., 2019, 31, 3333.
- S3. F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L. De Trizio and L. Manna, J. Am. Chem. Soc., 2018, 140, 12989.
- S4. M. B. Gray, J. D. Majher, T. A. Strom and P. M. Woodward, *Inorg. Chem.*, 2019, **58**, 13403.
- X. Cheng, Z. Xie, W. Zheng, R. Li, Z. Deng, D. Tu, X. Shang, J. Xu, Z. Gong,
 X. Li and X. Chen, *Adv. Sci.*, 2022, 9, 2103724.
- S6. Z. Rao, Z. Li, X. Zhao and X. Gong, New J. Chem., 2022, 46, 15192.
- S7. S. Li, Z. Shi, F. Zhang, L. Wang, Z. Ma, D. Wu, D. Yang, X. Chen, Y. Tian, Y. Zhang, C. Shan and X. Li, *ACS Appl. Mater. Interfaces*, 2020, **12**, 46330.
- S8. J. Xu, G. Chen, T. Yang, H. Wu, L. Li, C. Ma, C. Zhu, Y. Wu, B. Liu, A. Hu, X. Qiu, L. Zhong, J. Shen, A. Huang, Y. Guo and H. Gao, *J. Lumin.*, 2023, 255, 119606.