Selective and sensitive detection of Nitric Oxide in aqueous and biological settings using a novel fluorescent Cobalt-MOF

Kushal Arya,^a Sheetal Negi^b, Ajay Kumar,^{a,c} Kanika Thakur,^d Sanjay Mehra,^e Arvind Kumar,^e Ravinder Kumar,^d Surinder Kumar Mehta,^a Ramesh Kataria^{a*#}and Vikram Saini^{b*#}.

 ^aDepartment of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India-160014.
^bLaboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi-110029, India
^cUniversity Center for Research and Development, Chandigarh University, Mohali, Punjab-140301, India
^dDepartment of Zoology, Panjab University, Chandigarh-160014, India.
^eCSIR-Central Salt and Marine Chemicals Research Institute Council of Scientific and Industrial Research, Bhavnagar, Gujarat, India-364002.

Correspondence:

vikram@aiims.edu; rkataria@pu.ac.in

Equal Contribution

Sr. No.	CONTENTS
Figure S1	TGA curve of PUC-9 NPs
Figure S2	PXRD spectra of PUC-9 and PUC-9 NPs.
Figure S3	Overall elemental mapping of PUC-9.
Figure S4	Elemental mapping of PUC-9 to confirm the presence of Carbon.
Figure S5	Elemental mapping of PUC-9 to confirm the presence of Nitrogen.
Figure S6	Elemental mapping of PUC-9 to confirm the presence of Oxygen.
Figure S7	Elemental mapping of PUC-9 to confirm the presence of Cobalt.
Figure S8	Size distribution histogram plot of PUC-9 NPs.
Figure S9	Fluorescence spectra of PUC-9 at different excitation wavelength (310-340 nm).
Figure S10	Comparison of emission spectra of PUC-9 with its ligands.

Figure S11	The fluorescence intensity of PUC-9 NPs remained unchanged over a 30-day incubation period, indicating their stable fluorescence properties. This consistent intensity suggests that the NPs maintain their structural integrity and fluorescent
	characteristics without degradation or significant alteration in aqueous media.
Figure S12	Calibration curve of PUC-9 in the presence of different•NO concentration.
Figure S13	Mass spectra of 5-aminoisophthalic acid following the addition of •NO solution with a perfectly matching peak at 165.018 (100% intensity).
Figure S14	Absorbance spectra of PUC-9 and 5-amino isophthalic acid before and after addition of •NO.
Figure S15	MTT cell viability assay on treatment with different PUC-9 concentrations.
Figure S16	Absorbance-based detection of 'NO production in THP-1 cells using PUC-9
Table S1	Crystal data and Structure Refinement for PUC-9.

Figure S1. TGA curve of PUC-9 NPs

Figure S2. PXRD spectra of PUC-9 and PUC-9 NPs.

Figure S3. Overall elemental mapping of PUC-9.

Figure S4. Elemental mapping of PUC-9 to confirm the presence of Carbon.

Figure S5. Elemental mapping of PUC-9 to confirm the presence of Nitrogen.

Figure S6. Elemental mapping of PUC-9 to confirm the presence of Oxygen.

Figure S7. Elemental mapping of PUC-9 to confirm the presence of Cobalt.

Figure S8. Size distribution histogram plot of PUC-9 NPs.

Figure S9. Fluorescence spectra of PUC-9 at different excitation wavelength (310-340 nm).

Figure S10. Comparison of emission spectra of PUC-9 with its ligands.

Figure S11. The fluorescence intensity of PUC-9 NPs remained unchanged over a 30-day incubation period, indicating their stable fluorescence properties. This consistent intensity suggests that the NPs maintain their structural integrity and fluorescent characteristics without degradation or significant alteration in aqueous media.

Figure S12. Calibration curve of PUC-9 in the presence of different-NO concentration.

Figure S13. Mass spectra of 5-aminoisophthalic acid following the addition of •NO with a perfectly matching peak at 165.018 (100% intensity).

Figure S14. Absorbance spectra of PUC-9 and 5-amino isophthalic acid before and after addition of •NO.

Cell toxicity Assay:

Using the MTT assay, which is used widely for the estimation of cell toxicity, we observed that there is non-significant impact on the survival of THP-1 macrophages following exposure to PUC-9 up to 0.5 and survival remains >80% even after prolonged exposure (>6hr) (Figure S15).

Figure S15: MTT cell viability assay on treatment with different PUC-9 concentrations: Data shows that no toxicity in THP-1 cells was observed up to 0.5 mg/mL even at >6hr of exposure. The experiments were performed at least twice in triplicates. Data represent Mean±SEM of the experiments performed at least twice in triplicates. Statistical significance was determined using One-Way ANOVA with Tukey's post-hoc correction (* $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$).

Figure S16: Absorbance-based detection of •NO production in THP-1 cells using PUC-9: a) Absorbance spectra of PUC-9 following low LPS stimulation in live and heat-killed THP-1 cells (dead cells). Live cells showed increased absorbance due to •NO production following exposure to LPS; dead cells alone or in presence of LPS showed no significant change in absorbance. **b)** Histogram summarizing absorbance values of PUC-9 spectra. The bar represents absorbance averaged over **310–340 nm**, measured in triplicates, and plotted as mean

 \pm SEM. Data represent Mean \pm SEM from N=2 independent experiments, each in triplicate n= 3. Statistical significance was determined using One-Way ANOVA with Tukey's post-hoc correction (*p \leq 0.05, **p \leq 0.01, ***p \leq 0.001).

CCDC	2402336		
Identification code	PUC-9		
Empirical formula	$C_{34}H_{19}CoN_7O_{10}$		
Formula weight	744.49		
Temperature/K	293(2)		
Crystal system	triclinic		
Space group	P-1		
a/Å	10.0211(2)		
b/Å	10.1174(4)		
c/Å	20.8976(3)		
α/°	93.905(2)		
β/°	101.679(2)		
$\gamma/^{\circ}$	104.872(2)		
Volume/Å ³	1989.19(10)		
Ζ	2		
pcalc g/cm ³	1.243		
μ/mm^{-1}	0.490		
F(000)	758.0		
Crystal size/mm ³	$0.009 \times 0.007 \times 0.006$		
Radiation	Mo Kα (λ = 0.71073)		
2Θ range for data collection/°	6.534 to 54.718		
Index ranges	$-11 \le h \le 12, -13 \le k \le 12, -26 \le l \le 25$		
Reflections collected	27506		
Independent reflections	8425 [Rint = 0.0504, Rsigma = 0.0633]		
Data/restraints/parameters	8425/6/470		
Goodness-of-fit on F ²	1.031		
Final R indexes [I>=2 σ (I)]	R1 = 0.0521, wR2 = 0.1391		
Final R indexes [all data]	R1 = 0.0766, wR2 = 0.1508		
Largest diff. peak/hole / e Å ⁻³	0.51/-0.44		

Table S1. Crystal data and Structure Refinement for PUC-9.

Table S2. Comparison of properties of PUC-9 with other fluorescent probes used for the detection of •NO.

Name of the sensor	Detection	LOD	Detection in	Cytotoxicity	Ref.
	method	value	Living Cells		
Sensor-L ³ based on	Fluorescence	83.4 nM	Yes, by	less than	1
Rhodamine-B-en (2)			imaging in	30%	
and 2-(pyridin-2-			HepG2 cell	cytotoxicity	
ylmethoxy)benzalde			lines	after 24	
hyde (1)				hours	
UiO66@NH ₂	Fluorescence	0.575 μΜ	No	unknown	2
CuCo-PTC MOF	Fluorescence	0.15 μM	No	unknown	3
FP-NO	Fluorescence	47.6 nM	Yes, imaging	Low	4
			and flow	cytotoxicity	
			cytometry		
			analysis of		
			exogenous •NO		
			in MCF-7 cells		
Bodipy dye	Fluorescence	30 nM	Yes, by	unknown	5
			imaging in HL-		
			7702 cells		
PABA@MOF-808.	Fluorescence	0.715 μΜ	No	Unknown	6
PUC-2	Fluorescence	0.08 µM	Yes, in THP-1	Minimal	7
			cells	toxicity (90-	
				95% survival	
				even when	
				exposed for	
				>12 h)	
PUC-9	Fluorescence	19 nM	Yes, by using	Minimal	This
			fluorescence	toxicity,	study
			imaging,	survival	
			absorbance and	remains	
			fluorescence	>80% even	
			spectra in THP-	after	

	1 cells	prolonged	
		exposure (
		>6hr)	

References

- 1 R. Alam, A. S. M. Islam, M. Sasmal, A. Katarkar and M. Ali, *Org. Biomol. Chem.*, 2018, **16**, 3910–3920.
- 2 A. V. Desai, P. Samanta, B. Manna and S. K. Ghosh, *Chem. Commun.*, 2015, **51**, 6111–6114.
- 3 M. Wang, H. Dong, Y. Zhang, X. Zhu, M. Gu, Q. Zhu, X. Miao, Y. Zhou and M. Xu, *Microchim. Acta*, 2022, **189**, 1–10.
- 4 Q. Han, J. Liu, Q. Meng, Y. L. Wang, H. Feng, Z. Zhang, Z. P. Xu and R. Zhang, *ACS Sensors*, 2019, **4**, 309–316.
- 5 X. Lv, Y. Wang, S. Zhang, Y. Liu, J. Zhang and W. Guo, *Chem. Commun.*, 2014, **50**, 7499–7502.
- 6 W. Mandal, D. Majumder, S. Fajal, S. Let, M. M. Shirolkar and S. K. Ghosh, *Mol. Syst. Des. Eng.*, 2023, **8**, 756–766.
- A. Kumar, S. Negi, T. Choudhury, V. Mutreja, S. Sunaina, S. C. Sahoo, A. Singh, S. K. Mehta, R. Kataria and V. Saini, *Microchim. Acta*, 2023, 190, 1–14.