High performance $TiO_2@Ti_3C_2T_x$ MXene water vapor sensing material for diagnosing early SGTR accidents in nuclear power plants

Yafeng Hao,^a Tengteng Li,^a Cheng Lei,^{a,*} Yu Xie,^a Ruifang Liu,^b Zhenhao Zhang,^a Fengchao Li,^a Ting Liang ^{a,*}

^aKey Laboratory of Micro/nano Devices and Systems, Ministry of Education, North University of China, Shanxi, Taiyuan, 030051, P. R. China ^bState Key Laboratory of Digital Medical Engineering, School of Biology and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China

^{*} Corresponding author.

E-mail address: leicheng@nuc.edu.cn (Cheng Lei); liangtingnuc@nuc.edu.cn (Ting Liang).

Fig. S1. Tyndall effect diagram of $Ti_3C_2T_x$ dispersions.

Fig. S2. (a) Photo of wafer with different finger electrode structures; (b) Photographs of interdigital

gold electrodes (20x magnification under microscope).

Fig. S3. The maximum size of the chip is: 8.87*4.02*1.05 mm (Chip thickness is the total thickness of the wafer and superstructure).

Fig. S4. (a) Overall SEM image of dripping onto the cross fingers. (b) SEM images of the $TiO_2@Ti_3C_2T_x$ gas sensor. (It should be noted that the gold interdigital electrodes cannot be seen due to the coverage of the dense TiO_2 nanoparticles). (c) $TiO_2@Ti_3C_2T_x$ surface SEM image.

Fig. S5. AFM image of roughness.

Fig. S6. Measurement of $TiO_2@Ti_3C_2T_x$ film thickness using a stepper probe.

Fig. S7. I–V curves directly measured on the $TiO_2@Ti_3C_2T_x$ film sensor via a two-terminal method.

Fig. S8. Full XPS spectrum of MT-2h

Fig. S9. The O 1s XPS spectra of M, MT-1h, MT-2h, MT-3h and MT-4h.

Fig. S10. Comparison of the individual response performance of the devices at different operating

temperatures.

Fig. S11. Photograph of $Ti_3C_2T_x$ after 2 months of being stored in an aqueous dispersion (Lowconcentration dispersion appeared light yellow, indicating serious oxidation; high-concentration dispersion appeared dark green, indicating slight oxidation).

Materials	Gas	Conc.	t_1^a	t_2^{b}	T (°C)	Ref.
Ti ₃ C ₂ T _x	Organic Vapors ^c	100 ppm	300s	600s	25°C	[1]
$Ti_3C_2T_x \ / \ TiO_2$	OrganicVapors ^d	100 ppm	~240s	~300s	25°C	[2]
Mxene / MWCNT	Water vapor	50%RH	28s	66s	$\sim 25^{\circ}C^{e}$	[3]
V ₂ CT _x	Hydrogen	2ppm	120s	420s	23°C	[4]
	Methane	25ppm	480s	330s		
$Ti_3C_2T_x \ / \ SnO_2$	Ammonia	500 ppm	109s	342s	25°C	[5]
CuO /Ti ₃ C ₂ T _x	Toluene	50 ppm	270s	10s	250°C	[6]
MT-2h	Water vapor	100 ppm	3s	41s	300°C	this work

Table S1. Comparison of MXene-based gas sensor performance

References

[1] S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K.
 Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, Metallic Ti₃C₂T_x MXene Gas Sensors
 with Ultrahigh Signal-to-Noise Ratio, Acs Nano 12 (2018) 986-993.

[2] E. Lee, A.V. Mohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, Room
 Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene), ACS Appl.
 Mater. Interfaces 9 (2017) 37184-37190.

[3] H. Xing, X. Li, Y.L. Lu, Y. Wu, Y. He, Q.M. Chen, Q.J. Liu, R.P.S. Han, MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring, Sens. Actuator B Chem. 361 (2022)

^a The t₁ indicating the response time of the sensor.

^b The t₂ indicating the recovery time of the sensor.

^c Indicating three organic gases: Acetone, Ethanol and Ammonia.

^d Indicating four organic gases: Acetone, Ethanol, Ammonia and Methanol.

 $^{^{}e}$ The \sim indicating the estimate, which is not directly provided in the original text, was obtained by the author through the test charts.

131704.

[4] H.T. He, Q.X. Xia, B.X. Wang, L.B. Wang, Q.K. Hu, A.G. Zhou, Two-dimensional vanadium carbide (V_2CT_x) MXene as supercapacitor electrode in seawater electrolyte, Chin. Chem. Lett. 31 (2020) 984-987.

[5] H.M. Yu, L.H. Dai, Y.Q. Liu, Y. Zhou, P. Fan, J.T. Luo, A.H. Zhong, Ti₃C₂T_x
MXene-SnO₂ nanocomposite for superior room temperature ammonia gas sensor, J.
Alloys Compd. 962 (2023) 171170.

[6] A. Hermawan, B. Zhang, A. Taufik, Y. Asakura, T. Hasegawa, J.F. Zhu, P. Shi, S.

Yin, CuO Nanoparticles/ $Ti_3C_2T_x$ MXene Hybrid Nanocomposites for Detection of Toluene Gas, ACS Appl. Nano Mater. 3 (2020) 4755-4766.