Supporting informations

Smart responsive luminescence and VOCs sensing application of a copper(I) cluster with novel P₂CuI₂CuN₂ core

Ze-Qi Dai,^a Li Song,**^b Jun-Er Chen,^{a,c} Ding-Feng Jin,^a Hong-Xiao Jin,^a Xiao-Lin Guo,^a Hang-Yan Shen^a and Wen-

Xiang Chai*a,c

^aCollege of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P.R. China

^bSchool of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China

^cEngineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao

University, Xiamen, 361021, P.R. China

Tables

Table S1. Crystal Parameters and Structure Refinement Data for 1.

Empirical formula	$C_{63}H_{48}Cu_2I_2N_4O_3P_2$
Formula weight	1351.87
Temperature/K	293
Space group	P2 ₁ /m
Crystal size(mm)	0.42×0.32×0.20
Crystal system	monoclinic
Unit cell dimensions	
a(Å)	9.9622(12)
b(Å)	23.114(2)
c(Å)	13.108(2)
α(°)	90
β(°)	111.738(16)
γ(°)	90
V(Å3)	2803.6(7)
Z	2
$ ho_{calc} g/cm^3$	1.601
μ/mm- 1	1.967
F(000)	1344.0
Radiation	ΜοΚα (λ=0.71073)
2θ range for data collection/°	6.258 to 49.994
Reflections collected	18427
Independent reflections	5049 [$R_{int} = 0.0916$, $R_{sigma} = 0.0689$]
Data/restraints/parameters	5049/0/357
Goodness-of-fit on F2	1.041
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0817, wR_2 = 0.2078$

Final R indexes [all data]	$R_1 = 0.1092, wR_2 = 0.2274$
Largest difference peak/hole/eÅ-3	1.94/-1.59

Complex 1	Exp.	Cal. S ₀		Exp.	Cal. S ₀
Cu1–I1	2.6126(18)	2.71409	Cu1–N1	2.110(7)	2.14024
Cu1–I2	2.6175(19)	2.72022	Cu1-N1#1	2.110(7)	2.14025
Cu2–I1	2.7208(16)	2.82168	Cu2–P1	2.307(2)	2.41892
Cu2–I2	2.6825(15)	2.81498	Cu2-P1#1	2.307(2)	2.41886
I1–Cu1–I2	110.50(7)	119.00460	N1-Cu1-N1#1	108.9(4)	110.08523
I1–Cu1–N1	109.53(19)	107.14070	I2Cu1N1	109.2(2)	106.66972
I1-Cu1-N1#1	109.53(19)	107.13389	I2-Cu1-N1#1	109.2(2)	106.67345
I1–Cu2–I2	105.37(5)	112.34500	P1-Cu2-P1#1	108.51(15)	114.26122
I1–Cu2–P1	106.70(6)	107.09988	I2–Cu2–P1	111.82(6)	108.06603
I1-Cu2-P1#1	106.70(6)	107.10298	I2-Cu2-P1#1	111.82(6)	108.06510
Cu1–I1–Cu2	71.79(5)	64.31769	Cu1–I2–Cu2	72.33(5)	64.33271
Cu1–I1–I2–Cu2	180.00(6)	179.99849	Cu1Cu2	3.128(2)	2.94792

Table S2. Selected Bond Lengths (Å) and Angles (°) for experimental (crystal) and optimized S_0 geometries of 1.

^{#1}Symmetry code: +x, 3/2-y, +z.

Table S3. Selected Bond Lengths (Å) and Angles (°) for optimized S_0 , S_1 and T_1 geometries of 1.

Complex 1	Cal. S ₀	S_1	T_1		Cal. S ₀	S_1	T_1
Cu1–I1	2.71409	2.68676	2.77205	Cu1–N1	2.14024	2.08027	1.97496
Cu1–I2	2.72022	2.69487	2.77464	Cu1–N2	2.14025	2.21576	1.97596
Cu2–I1	2.82168	2.72212	2.81161	Cu2–P1	2.41892	2.46329	2.41590
Cu2–I2	2.81498	2.70293	2.81634	Cu2–P2	2.41886	2.41558	2.41299
I1–Cu1–I2	119.00460	112.03704	104.35274	N1-Cu1-N2	110.08523	101.56599	140.69690
I1–Cu2–I2	112.34500	110.68774	102.24619	P1–Cu2–P2	114.26122	115.50801	116.04934
Cu1–I1–I2–Cu2	179.99849	162.48350	179.54551	Cu1Cu2	2.94792	3.01094	3.46687

Figures

Figure S1 (a) Simulated XRD pattern calculated from single crystal data. (b) Experimental XRD pattern recorded from powder sample of complex 1.

Figure S2 Plot of $F^2(R)$ vs photon energy for 1 at room temperature, the estimated bandgap is 2.34 eV.

Figure S3 The UV-Vis absorption spectrum for complex 1 in diluted DCM solution at room temperature ($c = 1.0 \times 10^{-5} \text{ mol} / \text{L}$).

Figure S4 The UV-Vis absorption spectrum for 1 in a PMMA thin film (doped 5%) at room temperature.

Figure S5 The PL emission spectrum for complex 1 in a PMMA:1 thin film (doped 5%) at room temperature ($\lambda_{ex} = 365 \text{ nm}$).

Figure S6 The PL emission spectrum for complex 1 loaded on a test paper ($\lambda_{ex} = 365$ nm).

4

Figure S7 The comparison of experimental geometry from crystal data (green) and optimized geometry from DFT calculation (red), H atoms are omitted for clarity.

Figure S8 Some Kohn-Sham molecular orbital diagrams involved in the main transition modes of the 10 low-lying excited state in complex 1. The molecular orbital energies are in atomic units; isovalue = 0.03.

Figure S9 The Kohn-Sham molecular orbital diagrams of the HOMO and LUMO at the T_1 minimum for complex 1. isovalue = 0.03.

Figure S10 The Kohn-Sham molecular orbital diagrams of the HOMO and LUMO at the S_1 minimum for complex 1. isovalue = 0.03.

Figure S11 The photographs for the powder of complex 1under UV irradiation (top) and under natural light (bottom): before (a), and after exposed in pyridine (b) and cyclohexylamine (c) vapours.

Figure S12 The UV-Vis absorption spectra of the three complexes 1-3, obtained through powder diffuse reflection measurement.

Figure S13 The PL emission spectrum measured on powder sample at room temperature ($\lambda_{ex} = 365$ nm) for complexes of 2-3 and ligand 4-PBO.

Figure S14 The FTIR spectrum measured on powder samples of complex 1 and its derivatives after exposed in pyridine and cyclohexylamine vapours, and the sample recovered after sensing response.

8

Figure S15 The Kohn-Sham molecular orbital diagrams of the HOMO and LUMO for complex $(Xantphos)Cu_2I_2(Py)_2$ (2). isovalue = 0.03.

Figure S16 The Kohn-Sham molecular orbital diagrams of the HOMO and LUMO for complex (Xantphos) $Cu_2I_2(CHA)_2$ (3). isovalue = 0.03.

Figure S17 The simulated UV-Vis absorption spectra of 1-3, obtained from TD-DFT calculation.

Figure S18 The simulated FTIR spectra of 1-3 (from top to bottom), obtained from DFT calculation.

Figure S19 The PL spectral of the paper-based sensor loaded with cluster 1 before and after response in pyridine (Py) vapor, and their recovery by heating.

