Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Rapid Efficiency Loss of FAPbI₃ Perovskite Solar Cells in 2-

Methoxyethanol-based Precursor Solutions

Hanyu Yue^a, Bo Li^{a,*}, Yang Liu^a, Wei Pu^a, Meng Zhang^a, Yu Huang^a, Meidan Que^{a,*}

^a College of Materials and Engineering, Xi'an University of Architecture and Technology,

Xi'an, Shaanxi, 710055, China

*E-mail: libo_21@xauat.edu.cn, mdque@xauat.edu.cn

Fig. S1 External quantum efficiency (EQE) curves and integrated current densities of PSCs fabricated from perovskite precursor solution aged at 0 h and 9 h.

Fig. S2 J-V curves of PSCs prepared using 2-ME (a) and DMF (b) precursor solution aged for 0 h, 9 h and 24 h.

Fig. S3 X-ray diffraction (XRD) patterns of PbI_2 and δ -phase perovskite.

Fig. S4 XPS spectra of perovskite films prepared from the precursor solution aged for 0 h and 9 h.

Fig. S5 SSPL of perovskite films prepared from the precursor solution aged for 0 h and 9 h on (a) FTO and (b) quartz substrates.

Fig. S6 (a, b) Fourier transform infrared spectroscopy of precursor solution aged for 0 d and 1

Fig. S7 UV-visible spectra of films prepared from the precursor solution aged in different times.

Fig. S8 UV-visible spectra of the films prepared from the solution after 3 d of aging using the

 M_D strategy and the solution of re-add 0.5 M FAI.

Fig. S9 Images of the solute component extracted from the perovskite precursor solution with the addition of a combination of DMPU and RACl by using EA antisolvent.

Fig. S10 Statistical photovoltaic parameters of (a) open-circuit voltage (V_{oc}), (b) short-circuit photocurrent density (J_{sc}), (c) fill factor (FF) of perovskite solar cells aged in different sequential addition strategies.

Fig. S11 Changes of (a) V_{OC} and (b) PCE in PSCs prepared from precursor solutions with different base solution aging time.

Device	2ME 0 h	2ME 9 h	2ME 24 h	DMF 0 h	DMF 9 h	DMF 24 h
PCE _{For}	22.58	17.25	3.96	20.46	21.65	17.98
PCE _{Rev}	22.82	18.41	6.59	20.95	21.76	18.97
HI	1%	6.3%	39.9%	2.3%	0.5%	5.2%

Table S1. Forward and reverse scan efficiency and hysteresis index of PSCs prepared using

2-ME and DMF precursor solution aged for 0 h, 9 h and 24 h.

Table S2. Fitted results from TRPL spectra in Fig. 2i, j.

Sample	A ₁	$\tau_1(ns)$	A_2	$\tau_2(ns)$	$\tau_{ave}(ns)$
Quartz 0 h	0.427	289.6	0.241	3350.8	2934
Quartz 9 h	0.504	52.4	0.216	2438.7	2325
FTO 0 h	0.879	15.3	0.099	230.4	151
FTO 9 h	0.745	18.43	0.08	653.8	522