Supplementary Information

In situ surface modification engineering for synthesizing nano-absorbers with self-forming heterointerfaces and prominent electromagnetic wave absorption

Rongsheng Bai^{1, 2, #}, Yue-e Zhang^{2, 3, #}, Ziqing Yin¹, Lei Chang¹, Hongjie Xu^{1, *}, Zhiyong Xue^{1, *}, Haibo Ke^{2, *}, Weihua Wang^{1, 2, 3, 4}

¹ School of Energy Power and Mechanical Engineering, North China Electric Power

University, Beijing 102206, China

² Songshan Lake Materials Laboratory, Dongguan 523808, China

³ College of Physics, Liaoning University, Shenyang 110036, China

⁴ Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

[#] These authors contributed equally to this work.

*Corresponding authors: <u>xuhongjie@ncepu.edu.cn</u>; <u>xuezy@ncepu.edu.cn</u>; <u>kehaibo@sslab.org.cn</u>

- Fig. S1 SAED result of (a) S1, (b) S2, (c) S3, and (d) S4.
- Fig. S2 The statistical particle size of S1-S4.
- Fig. S3 The EDS mapping results of SEM for S2.
- Fig. S4 XPS results of S1-S4.
- Fig. S5 TEM result of S2 after exposure in air for six months.
- **Fig. S6** (a) The M_s and H_c of S1-S4; (b) *M*-*T* curves of S1-S4.
- Fig. S7 (a-d) RL-f curves under different thicknesses of NA1-NA4. The EAB of (e)
- NA1 and (f) NA2 at different thicknesses.

Table S1 The M_s in this work and other works reported currently.

Fig. S1

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Table S1		
Nano-composites	M _s (emu/g)	Refs.
$Fe_2(MoO_4)_3@C$	15.42	[5]
CoFe ₂ O ₄ /RGO@PVP	54.2	[10]
FeNi/SWCNT	79.3	[27]
Graphene@Fe ₃ O ₄ /SiBCN	20	[28]
Fe-P-2C	24.3	[53]
S2	157	This work