Supporting Information

Porous Al₁₁Ce₃ intermetallics as effective sulfur host networks for stable lithium–sulfur batteries

Can Mi,‡^a Zigang Wang,‡^a Shenbo Yang,^b Xijun Liu,^c Yichao Wang,*,^d and Zhifeng Wang *,^a

- a. "The Belt and Road Initiative" Advanced Materials International Joint Research Center of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
- b. Hongzhiwei Technology (Shanghai) Co., Ltd., Shanghai 201206, China
- c. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- d. School of Science, RMIT University, Melbourne VIC 3001, Australia
- ‡ Can Mi and Zigang Wang contributed equally.
- * Corresponding authors.
- Yichao Wang (E-mail: yichao.wang@rmit.edu.au)
- Zhifeng Wang (E-mail: wangzf@hebut.edu.cn)

Fig. S1. Schematic diagram of the synthesis route.

Fig. S2. Al-Ce binary phase diagram.

Fig. S3. SEM images of (a,b) D-Al₉₀Ce₁₀ and (c,d) D-Al₉₈Ce₂.

Fig. S4. HR-TEM images of $D-Al_{90}Ce_{10}$ (a,b) and $D-Al_{98}Ce_2$ (c,d).

Fig. S5. XRD pattern of (a) $D-Al_{98}Ce_2$ and (b) $D-Al_{90}Ce_{10}$.

Fig. S6. XPS survey spectra of D-Al₉₆Ce₄.

Fig. S7. (a-c) XPS spectra of D-Al₉₈Ce₂: (a) XPS survey spectra, (b) Al 2p, (c) Ce 3d; (d-f) XPS spectra of D-Al₉₀Ce₁₀: (d) XPS survey spectra, (e) Al 2p, (f) Ce 3d.

Fig. S8. CV profiles of (a) S@D-Al₉₀Ce₁₀ and (b) S@D-Al₉₈Ce₂ cathode at 0.1 mV s^{-1} .

Fig. S9. Cycling performance of the D-Al₉₈Ce₂, D-Al₉₆Ce₄, and D-Al₉₀Ce₁₀ electrodes at the current density of 0.2 C

Fig. S10. Cycling performance of S@D-Al_{96}Ce_4 with different sulfur loadings from 1.2 to 5.2 mg cm⁻² at 0.2 C.

Fig. S11. EIS curves of S@D-Al₉₆Ce₄ after cycling at 1 C current density for different cycles.

Fig. S12. SEM images of fresh (a) S@D-Al₉₆Ce₄, (b) S@D-Al₉₀Ce₁₀, and (c) S@D-Al₉₈Ce₂ cathodes.

Fig. S13. SEM images of (a) S@D-Al₉₆Ce₄, (b) S@D-Al₉₀Ce₁₀, and (c) S@D-Al₉₈Ce₂ cathodes after cycling at 0.2 C for 100 cycles.

Fig. S14. EIS spectra of symmetric cells with D-Al₉₈Ce₂, D-Al₉₆Ce₄, and D-Al₉₀Ce₁₀ electrodes

Fig. S15. CV curves of symmetric cells with D-Al $_{96}$ Ce₄ electrodes.

Fig. S16. Cycling performance of the S@Al₂O₃ and S@CeO₂ cathodes at the current density of 0.2 C

Fig. S17. Electrical conductivity of the S@D-Al₉₈Ce₂, S@D-Al₉₆Ce₄, and S@D-Al₉₀Ce₁₀ cathodes.

Table S1. R_{ct} values of EIS curves of different samples.

Sample	R _{ct}	
S@D-Al ₉₆ Ce ₄	53.3	
S@D-Al ₉₀ Ce ₁₀	54.1	
S@D-Al ₉₈ Ce ₂	83.5	

Table S2. R_{ct} values of EIS curves of S@D-Al₉₆Ce₄ with different cycles.

Cycle number	R _{ct}
100	61.7
200	70.8
300	75.7
500	89.8

Material	Current density (c)	Cycle	Reversible (mAh g ⁻¹)	capacity	Reference
CeO ₂ @CNT/S	0.2	100	723		S1
CeO _{2-x} -CNT/S	0.5	600	877		S2
Zn@NPC-CeO ₂ -2	2	200	569.3		S3
Al ₂ O ₃ @C	0.1	200	302		S4
g-C ₃ N ₃ /CNTs	1	500	803.4		S5
V ₂ O ₃ @C-CNTs	0.5	500	715.4		S6
Co1-CoS2@CNT@C	1	500	555.8		S7
S@D-Al ₉₆ Ce ₄	0.2	100	204.83		
	1	500	140		I his work

Table S3 Comparison of electrochemical performance.

References

- S1. D. J. Xian, C. X. Lu, C. M. Chen and S. X. Yuan, Energy Storage Mater., 2018, 10, 216-222.
- S2. Y. L. Xing, M. A. Zhang, J. Guo, X. Y. Fang, H. G. Cui, X. Q. Hu and X. Y. Cao, J. Solid State Chem., 2022, 316, 123642.
- S3. W. J. Feng, J. Z. Chen, Y. P. Niu, W. Zhao and L. Zhang, J. Alloys Compd., 2022, 906, 164341.
- S4. Y. C. Huang, C. C. Wu and S. H. Chung, ChemSusChem, 2024, e202402206.
- S5. W. Dong, Y. F. Guo, W. B. Wang, X. D. Hong, X. C. Xu, F. Yang, M. Y. Zhao, X. Zhang, D. Shen and S. B. Yang, J. Energy Storage, 2025, 110, 115256.
- S6. L. N. Jin, B. Z. Li, X. Y. Qian, S. L. Zhao and H. X. Xu, J. Alloys Compd., 2025, 1010, 178108.
- S7. Y. Y. Zheng, M. Y. Xu, Y. H. Jin, Y. N. Mao, X. Zhang and M. Q. Jia, J. Energy Storage, 2025, 107, 115015.