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S1. Instrument details

Instruments used during this scientific work were Fourier transform infrared spectroscopy (FTIR) 

IRA affinity-1S spectrophotometer-USA to record FTIR spectra in the range of 500-4000 cm-1. X-

ray diffraction (XRD) diffractograms were measured by Rigaku, Miniflex-II-Japan by means of Cu 

Kα (with a scan angle:5-80◦, at 40 kV, and 40 mA). The surface morphology was analyzed using 

MAIA3 TESCAN Scanning Electron Microscope (SEM) and ZEISS Gemini. A JEOL JEM-1400 

transmission electron microscopy (TEM) instrument with an accelerating voltage of 

100 kV was used. Brunauer−Emmett−Teller (BET) surface area was studied through Tristar II 

3020. All the electrochemical investigations were carried out using the Gamry interface (1010E) 

potentiostat. This potentiostat instrument contains three electrodes such as working electrode, 

reference electrode and auxiliary electrode. In this work, synthesized electrodes were used as 

working electrode, Ag/AgCl used as reference electrode and platinum wire used as auxiliary 

electrode.
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Figure S1. SEM images of (A) CoNi@SiO₂, (B) NS-doped CoNi@SiO2.
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Figure S2. Shows the EDX spectrum of NS-doped CoNi@SiO2.
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Figure S3. Shows the BET spectrum of CoNi@SiO2 and NS-doped CoNi@SiO2.

S2. Machine Learning for Optimization and Evaluation

The present study delved into examining the impact of ML in predicting overpotential on various 

compositions of fabricated materials involving implementation of various regression models 

(linear regression (LR), ridge regression (RR), decision tree regression (DTR), random forest 

regression (RFR), gradient boosting regression (GBR), K-nearest neighbors’ regression (KNNR), 

support vector regression (SVR), and extreme gradient boosting regression (XGBR)) on 

experimental dataset. Multiple regression models, were employed to establish quantitative 

relationship between a dependent variable (Overpotential) and one or more independent 

variables (concentration of Ni(NO3)2·6H2O Co(NO3)2·6H2O and thiourea). The evaluation of 

dataset done by regression model primarily centers on the partitioning of available data into 

three distinct subsets: the training set, the validation set, and the test/prediction set. Initially, the 

training dataset is employed to train the regression models, followed by rigorous testing against 

both the validation and test datasets. The evaluation of a multiple regression model primarily 

centres on the partitioning of available data into three distinct subsets: the training set, the 

validation set, and the test/prediction set. Initially, the training dataset is employed to simulate 
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the multiple regression models, followed by rigorous testing against both the validation and test 

datasets utilizing Python. The performance and accuracy of predictions are meticulously analysed 

through the error metrics, specifically Mean Squared Error (MSE) and R-squared (R2).
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Figure S4. shows the importance feature graph

S3. Electrochemical measurement

A computer-controlled GAMRY Potentiostat workstation was employed for all electrochemical 

studies, including cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical 

impedance spectroscopy (EIS), and chronoamperometry to investigate water oxidation. CV was 

utilized to examine the redox processes occurring at the electrode/electrolyte interface, while 

electrochemical impedance spectroscopy was used to measure the electrical resistance of 

specific analytes.

The electrochemical experiments were conducted using a standard three-electrode system 

housed in a glass cell. To clean the electrochemical cell, it was initially washed with a 3:1 mixture 
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of HNO₃ and H₂SO₄, followed by rinsing with ultrapure distilled water. The cell was then rinsed 

multiple times with ultrapure distilled water and acetone, and subsequently dried in an oven at 

80°C for 30-40 minutes. Prior to placing the counter electrode (Pt wire) into the electrochemical 

cell, it was washed with ultrapure water and dipped in a 20% HNO₃ solution for a few minutes. 

All measurements were performed at room temperature in a 1 M KOH electrolyte solution with 

a pH of 13.5. CV was performed by cycling the potential from positive to negative at scan rates 

of 5 to 25 mV s⁻¹. The electrolyte solution was purged with argon gas for 30 minutes before 

measuring electrochemical activity. All current values were calculated based on the geometrical 

area of the working electrode. All potentials were recorded after 50 percent IR adjustment, which 

was done manually using the formula:

𝐸𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐸𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 ‒ 𝐼𝑅 (𝑆1)

The following equation was used to convert all potential collected vs. Ag/AgCl into 

RHE potential:

𝐸𝑅𝐻𝐸 = 𝐸 𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.059 𝑝𝐻 + 𝐸𝑂 𝐴𝑔/𝐴𝑔𝐶𝑙  (𝑆2)

In this context, E Ag/AgCl represents the measured potential against the Ag/AgCl electrode, E0 

Ag/AgCl represents the typical thermodynamic potential (0.197 V) of Ag/AgCl, and ERHE 

represents the estimated potential vs. RHE.
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Figure S5. Evaluation of electrocatalytic activity through CV in non-faradaic region (A, C, E, G) of 

NS-doped CoNi@SiO2, CoNi@SiO2, SiO2and NF electrodes respectively & (B, D, F & H) represent 

the graphs plotted between current density and scan rate (5-25 mVs-1) of NS-doped CoNi@SiO2, 

CoNi@SiO2, SiO2 and NF.

S3.1 Tafel Slope calculations from the polarization curve of NS-doped CoNi@SiO2, CoNi@SiO2, 

SiO2, and NF

To evaluate the kinetics and catalytic performance, Tafel plot was plotted between over 

potential and log of current density in the linear portion of steady state polarization curve. It can 

be described using the equation.

ŋ = 𝑎 + (2.303
𝑅𝑇
ꭤ𝑛𝐹) ∗ log 𝑗 (𝑆3)

Here, over potential is represented by ŋ, charge transfer coefficient byꭤ, the number of electrons 

take part in reaction by n, current density by j, faraday constant by F. The 2.303RT/αnF value 

refers to the slope. 

S3.2 Electrochemically active surface area of NS-doped CoNi@SiO2, CoNi@SiO2, SiO2, 

and NF

Evaluating the electrochemical double-layer capacitance and performing CV measurements at 

various scans ranging from 5-25 mV/s, the electrochemically active surface area of the catalyst 

was measured. By fitting the average current density vs scan rate curve, the electrochemical 

capacitance may be calculated easily. The CV was performed within a non-faradic region. The 

electrochemical active area was calculated by adopting already reported method [S1] and is given 

below

Cdl = slope*1000/2 (S4)

Cdl of NS-doped CoNi@SiO2= slope*1000/2 = 0.00762*1000/2 = 3.81 mF cm-2
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Cdl of CoNi@SiO2= slope*1000/2 = 0.00508*1000/2 = 2.54 mF cm-2

Cdl of SiO2= slope*1000/2 = 0.000676*1000/2 = 0.338 mF cm-2

Cdl of NF= slope*1000/2 = 0.000448*1000/2 = 0.224 mF cm-2

Electro-active surface area = Cdl/Csp (S5)

Electro-active surface area of NS-doped CoNi@SiO2 = 3.81/0.04 = 95.25 cm2

Electro-active surface area of CoNi@SiO2= 2.54/0.04 = 63.5 cm2

Electro-active surface area of SiO2= 0.338/0.04 = 8.45 cm2

Electro-active surface area of NF= 0.224/0.04 = 5.6 cm2

S3.3 OH− ion adsorption capability of the developed electrodes

Laviron equation is given below

𝐸𝑐 = 𝐸
1
2

‒ ( 𝑅𝑇
𝛼𝑛𝐹) ∗ ln ( 𝛼𝑛𝐹

𝑅𝑇𝑘𝑠) ‒ ( 𝑅𝑇
𝛼𝑛𝐹) ∗ ln (𝑣)(𝑆6)

Where Ec and E1/2 are the reduction and formal potential of metal redox T, F, ks and R, stand for 
absolute temperature, Faraday constant, redox constant, and general gas constant, 
respectively. Whereas n and α represent the number of electrons transferred and electron 
transfer coefficient. 

Table S1. represents the RMSE, and %R2 of each ML algorithm on training, validation, 
and test dataset

Model Train RMSE Validation 
RMSE Test RMSE R2 Score

Linear Regression 4.75 4.76 4.70 0.81
Ridge Regression 4.75 4.76 4.70 0.81
Decision Tree Regression 0.00 2.95 2.79 0.93
Random Forest Regression 1.45 2.77 3.24 0.91
Gradient Boosting Regression 0.54 2.03 2.04 0.96
K-nearest neighbor Regression 3.36 5.98 4.26 0.85
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Support Vector Regression 6.58 9.23 8.08 0.44
XGBoost Regression 0.00 2.47 2.20 0.96

Table S2. Comparison table of Tafel slope with already reported electrode

Sr. No Electrode Tafel Slope 
(mV/dec)

Overpotential at 
10 mA cm-2 (mV)

Reference

1 Co3O4/MgO–SiO2 88 340 S2

2 SV-CoSiO2 88 301 S3

3 SiO2/CoxP 120 293 S4

4 Fe3O4@SiO2@NiO/graphene/C3N4 40.46 288 S5

5 ZnO-Co3O4/C 44.5 270 S6

6 Mo/CoFe LDH 59 266 S7

7 SiO2@TiN/NF 40 256 S8

8 rGO/ZnSnO3 37 212 S9

9 NS-doped CoNi@SiO2 103.9 200 This work
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