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Figure S1. Rietveld refinement of powder XRD pattern for BiCu1-xCrxSeO (x = 0, 0.02, 0.04, 

0.06, 0.08) with normalized observed intensity in circle symbol, Rietveld fit in red line, 

differences in blue line, and reference BiCuSeO as a black solid line at the top of the figure. 
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Figure S2. Calculated grind size from SEM images 

• The average grain size of BiCu1-xCrxSeO for x = 0 and 0.04 are 2.1 µm and 1.8 µm, 

respectively. 

• The percentage of grains with size below 2 µm is 56%, 2-4 µm is 35%, and >4 µm is 

9% for Pristine BiCuSeO 

• The percentage of grains with size below 2 µm is 69%, 2-4 µm is 23%, and >4 µm is 

8% for x = 0.04 sample. 

 

 

Figure S3. BiCu0.96Cr0.04SeO with composition analysis of the Z1, Z2 and Z3 
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The SEM images of the polished BiCu0.96Cr0.04SeO sample are shown in Fig. S3. The contrast 

between CrO secondary phase and the BiCuSeO matrix can be clearly seen. The EDS 

composition analysis was performed on the Z1, Z2 and Z3 regions. It can be seen that the 

polished area (Z2 & Z3) is obviously rich in Cr element compared to the matrix (Z1), further 

confirming the composite of CrO. 

 

 

Figure S4. The elemental mapping of the Bi, Cu, Se, Cr and O atoms in the BiCu1-xCrxSeO 

samples with (a) x = 0.02, (b) x = 0.04, and (c) x = 0.08, respectively. 

 

As can be seen in Figure S4, the Cr tends to form nano- to microscale precipitates of CrO, even 

at the lowest Cr concentration, indicating very low solubility of Cr in BiCuSeO matrix.  

 

Reproducibility of the sample 

 

Figure S5. The reproducibility of BiCu0.96Cr0.04SeO sample. 
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These samples (sample 1 and 2) of the BiCu0.96Cr0.04SeO were synthesized using the same 

method and the results demonstrate good reproducibility among the samples. 

 

Specific Heat Calculation & Thermal Diffusivity: 

The temperature dependence of specific heat capacity is calculated using Debye model when 

𝑇 > 𝜃𝐷 with following equation  

 𝐶𝑝 = 𝛾𝑇 +
9𝑅𝑛

𝑀
∙ (

𝑇

𝜃𝐷
)
3

∙ ∫
𝑥4𝑒𝑥

(𝑒𝑥−1)2
𝑑𝑥

𝜃𝐷/𝑇

0
  (S1) 

where γ is the Sommerfeld coefficient, γ = 3.075·10-7 J g-1 K-2 [1], R is the ideal gas constant, n 

is the number of atoms, M is the molar mass, θD is the Debye temperature, θD = 243 K [2], and 

x = hν/kBT. The Debye temperature and the Sommerfeld coefficient were assumed to be 

independent of the doping level. According to eq. (S1), the calculated specific heat capacity of 

the BiCu1-xCrxSeO samples is slightly higher than pristine BiCuSeO due to the atomic mass 

difference between Cr (51.9961) and Cu (63.546) atoms. The thermal diffusivity is measured 

by laser flash method using LFA427, Netzsch, Germany. The typical dimension that used in 

thermal diffusivity measurement is 10 mm in diameter with a thickness of approximately ~1.7 

mm. 

 

 

Figure S6. Thermal properties as a function of temperature of the BiCu1-xCrxSeO (x = 0; 0.02; 

0.04; 0.06; 0.08) (a) specific heat capacity, (b) thermal diffusivity. 

Lorenz number calculation & electronic thermal conductivity: 

   The total thermal conductivity (𝜅) is defined as a sum of the electronic (𝜅𝑒) and lattice thermal 

conductivity (𝜅𝐿). The electronic part 𝜅𝑒 is directly proportional to the electrical conductivity σ 
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through the Wiedemann-Franz relation, 𝜅𝑒 = 𝐿𝜎𝑇 , where L is the Lorenz number [3]. The 

Lorenz number depends on the scattering parameter (r) and will decrease as the reduced Fermi 

energy (η) decreases with increasing temperature. The Lorenz number can be given as: [4] 
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For the Lorenz number calculation, we need to calculate the reduced Fermi energy (η) from the 

measured Seebeck coefficients compared to the calculated Seebeck coefficient by using the 

following relationship:  

                𝑆 = ±
𝑘𝐵

𝑒
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where Fn(η) is the n−th order Fermi integral, 

              𝐹𝑛(𝜂) = ∫
𝜒𝑛

1+𝑒𝜒−𝜂

∞

0
𝑑𝜒                  (S4) 

                        𝜂 =
𝐸𝑓

𝑘𝐵𝑇
                        (S5) 

where, kB, e, and Ef are the Boltzmann constant, the electron charge, and the Fermi energy. By 

assuming that the acoustic phonon scattering (r = −1/2) is the main scattering mechanism, the 

Lorenz number can be obtained by applying the calculated reduced Fermi energy η and 

scattering parameter r into Eq. (S2). Table S1 shows the calculated Lorenz number for pristine 

BiCuSeO as representative. Figs. S7 (a-b) show the Lorenz number and electronic thermal 

conductivity of the BiCu1-xCrxSeO as a function of temperature. 

 

Table S1. The Lorenz number for pristine BiCuSeO as a function of temperature 

T (K) Sexp (μVK-1) S(SPB-APS) (μVK-1) 𝜂 L (WΩK-2) × 10-8 

306 497.97 497.97 -3.76 1.49 

322 491.72 491.72 -3.69 1.49 

369 488.65 488.65 -3.65 1.49 

417 488.14 488.14 -3.64 1.49 

464 484.55 484.55 -3.60 1.49 

512 467.72 467.72 -3.40 1.50 

561 446.42 446.42 -3.15 1.50 

610 428.99 428.99 -2.95 1.50 

659 418.81 418.81 -2.82 1.50 

707 411.29 411.29 -2.73 1.50 

756 404.34 404.34 -2.65 1.50 
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Figure S7. (a) Lorenz number, (b) electronic thermal conductivity of the BiCu1-xCrxSeO (x = 

0; 0.02; 0.04; 0.06; 0.08) as a function of temperature. 

Callaway model calculation: 

   In a solid solution system, point defects scattering originates from both the mass difference 

(mass fluctuations) and the size and the interatomic coupling force differences (strain field 

fluctuations) between the impurity atom and the host lattice. Callaway model has been applied 

to describe the influence of point defects on the lattice thermal conductivity [5−7]. We present 

a phonon scattering model based on the above theory and try to describe the effect of Cr addition 

on the lattice thermal conductivity of BiCuSeO system.  

   At temperature above the Debye temperature, the ratio of the lattice thermal conductivities of 

a material containing defects to that of the parent material can be written as: [5−7] 

 
𝜅𝐿

𝜅𝐿,𝑝
=

𝑡𝑎𝑛−1(𝑢)

𝑢
 

     

   (S6) 

where 𝜅𝐿 , 𝜅𝐿,𝑝  are the lattice thermal conductivities of the defected and parent materials, 

respectively, and the parameter u is defined by:  

 𝑢 = (
𝜋2𝜃𝐷𝛺

ℎ𝑣𝑎
2 𝜅𝐿,𝑝𝛤)

1

2
 

     

   (S7) 

where h, Ω, va and θD stand for the Planck constant, average volume per atom, lattice sound 

velocity, and the Debye temperature.  

 𝑣𝑎 = (
1

3
[
1

𝑣𝑙
3 +

2

𝑣𝑠
3])

−
1

3

    (S8)

 

Here, the longitudinal (vl, 3290m/s) and transverse (vs,1900m/s) sound velocities have been 
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obtained from previous research which gives va about 2107 m/s. Debye temperature θD is 

defined by: [8] 

 𝜃𝐷 =
ℎ

𝑘𝐵
[
3𝑁

4𝜋𝑉
]

1

3
𝑣𝑎

  (S9) 

where the V is the unit−cell volume, N is the number of atoms in a unit cell, kB is Boltzmann 

parameter, and h presents the Planck constant. Eq. (S9) gives θD about 243 K. 

 

The disorder scattering parameter (Γ) in eq. (S7) represents the strength of point defects 

phonon scattering, which includes two components, the scattering parameter due to mass 

fluctuations (ΓM) and the scattering parameter due to strain field fluctuations (ΓS) [9]. Often, the 

mass fluctuations (ΓM) will be the dominant perturbation effect at a point defect, since the mass 

different from vacancy. The Klemens model using mass difference alone: 

 𝛤 = 𝛤𝑀                           (S10)
 

 𝛤𝑀 =
〈∆𝑀𝑛

2〉̅̅ ̅̅ ̅̅ ̅̅ ̅

〈𝑀〉̅̅ ̅̅ ̅2   (S11) 

Average mass of the compounds 〈𝑀〉̅̅ ̅̅ ̅ is given by stoichiometry weighted average of each site 

average mass 𝑀𝑛
̅̅ ̅̅  

 〈𝑀〉̅̅ ̅̅ ̅ =
∑ 𝑐𝑛𝑀𝑛𝑛

∑ 𝑐𝑛𝑛
 (S12) 

The average mass for site 2 (Cu) in BiCu1-xSeO is 

 𝑀2
̅̅ ̅̅ = (1 − 𝑥)𝑀𝐶𝑢 + 𝑥𝑀𝑣𝑎𝑐 (S13) 

if 𝑀𝑣𝑎𝑐 = 0, then 𝑀2
̅̅ ̅̅ = (1 − 𝑥)𝑀𝐶𝑢 

while the atomic mass averaged over the full solid is  

 〈𝑀〉̅̅ ̅̅ ̅ =
𝑐1𝑀1̅̅ ̅̅ +𝑐2𝑀2̅̅ ̅̅ +𝑐3𝑀3̅̅ ̅̅ +𝑐4𝑀4̅̅ ̅̅

𝑐1+𝑐2+𝑐3+𝑐4
=

𝑀𝐵𝑖+(1−𝑥)𝑀𝐶𝑢+𝑀𝑆𝑒+𝑀𝑂

4−𝑥
 (S14) 

Average mass variance of the compound 〈∆𝑀2̅̅ ̅̅ ̅̅ 〉 is given by stoichiometry weighted average 

of the all-mass variances ∆𝑀𝑛
2̅̅ ̅̅ ̅̅  

 〈∆𝑀𝑛
2〉̅̅ ̅̅ ̅̅ ̅̅ =

∑ 𝑐𝑛∆𝑀𝑛
2̅̅ ̅̅ ̅̅

𝑛

∑ 𝑐𝑛𝑛
  (S15) 

Where ∆𝑀𝑛
2̅̅ ̅̅ ̅̅ = ∑ 𝑓𝑖,𝑛(𝑀𝑖,𝑛 −𝑀𝑛

̅̅ ̅̅ )
2

𝑖  

For example, atomic mass variance for site 2 (Cu) in BiCu1-xSeO is 

 ∆𝑀2
2̅̅ ̅̅ ̅̅ = (1 − 𝑥)(𝑀𝐶𝑢 −𝑀2

̅̅ ̅̅ )2 + 𝑥(𝑀𝑣𝑎𝑐 −𝑀2
̅̅ ̅̅ )2 = (1 − 𝑥)(𝑀𝐶𝑢 −𝑀2

̅̅ ̅̅ )2 + 𝑥(0 −𝑀2
̅̅ ̅̅ )2 (S16) 

In vacancy scattering, a virial-theorem treatment for broken bonds suggests that the mass 
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difference on vacancy sites should be 𝑀𝑖,𝑛 −𝑀𝑛
̅̅ ̅̅ = −𝑀𝑣𝑎𝑐 − 2〈�̅�〉  as proposed by R. 

Gurunathan et al. [10]. However, in our system, tripling the mass difference of the vacancy 

could result in an overestimation of the disorder parameter. To ensure more precise calculations, 

we have adjusted the mass difference to be: 

 ∆𝑀𝑛
2̅̅ ̅̅ ̅̅ = ∑ 𝑓𝑖,𝑛(𝑀𝑖,𝑛 −𝑀𝑛

̅̅ ̅̅ )
2

𝑖 = (1 − 𝑥)(𝑀𝐶𝑢 −𝑀2
̅̅ ̅̅ )2 + 𝑥(−𝑀𝐶𝑢 − 0.25〈�̅�〉)2 (S17) 

There is no change of the mass on the sites of Bi, Se and O, which gives: 

 〈∆𝑀𝑛
2〉̅̅ ̅̅ ̅̅ ̅̅ =

∆𝑀𝑛
2̅̅ ̅̅ ̅̅

4−𝑥
 (S18) 

Finally, the disorder parameter (𝛤) can be calculated using equation S10-S18 as follow: 

 𝛤𝑀 = (4 − 𝑥)
(1−𝑥)(𝑀𝐶𝑢−𝑀2̅̅ ̅̅ )

2+𝑥(−𝑀𝐶𝑢−0.25〈�̅�〉)2

(𝑀𝐵𝑖+(1−𝑥)𝑀𝐶𝑢+𝑀𝑆𝑒+𝑀𝑂)2
 (S19) 

After the calculation of point defects scattering on phonon for the disorder parameter (𝛤) from 

those relative physical properties, we obtained perfect agreement between the calculated and 

measured values. 

 

Table S2. The disorder parameters (Γ), measured 𝜅𝐿, calculated 𝜅𝐿 and the difference between 

measured and calculated 𝜅𝐿 at room temperature. 

x Γ (×10-2) 𝜅𝐿 (exp) (Wm-1K-1) 𝜅𝐿 (calc) (Wm-1K-1) diff (%) 

0 0.000715 1.09 1.09 0.00365 

0.02 1.43 0.97 1.02 5.15 

0.04 2.87 0.95 0.97 2.11 

0.06 4.31 0.89 0.92 3.37 

0.08 5.74 0.91 0.88 3.30 

 

The theoretical calculation of lattice thermal conductivity is performed according to the Debye 

– Callaway model [11]. 

 𝜅𝐿 =
𝑘𝐵

2𝜋2𝑣𝑠
(
𝑘𝐵𝑇

ℏ
)
3

∫ 𝜏𝑡𝑜𝑡
𝑥4𝑒𝑥

𝑒𝑥−1
𝑑𝑥

𝜃𝐷
0

 (S20) 

where x is the reduced frequency (x = ħω/kBT), ω the phonon angular frequency, kB the 

Boltzmann constant, vs the average sound speed, ħ the reduced Planck constant, θD the Debye 

temperature, and 𝜏𝑡𝑜𝑡 the combined phonon relaxation time. Assuming scattering channels are 

independent of each other, the 𝜏𝑡𝑜𝑡 can be evaluated by Matthiessen’s rule: 

 𝜏𝑡𝑜𝑡
−1 = 𝜏𝑈

−1 + 𝜏𝐺𝐵
−1 + 𝜏𝑃𝐷

−1 (S21) 

where 𝜏𝑈, 𝜏𝑃𝐷, 𝜏𝐺𝐵 are the relaxation time for Umklapp process (U), grain boundary scattering 

(GB) and point defect scattering (PD), respectively. 
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The relaxation time for point defect scattering is showed as follows: [11] 

 
1

𝜏𝑃𝐷
= 𝐴𝜔4; 𝐴 =

𝑉𝑎

4𝜋𝑣𝑠
3 𝛤 (S22) 

where A is the fitting parameter, ω the phonon angular frequency, vs is the average sound speed, 

Va the atomic volume of the compound, Γ the disorder scattering parameter that characterizes 

the phonon scattering cross section of point defects. The disorder parameter (Γ) can be 

calculated by following equation S10 – S19 [12,13].  

 

The relaxation time for Umklapp scattering at high temperature is [14]: 

 
1

𝜏𝑈
= 𝐵𝜔2𝑇 (S23) 

where B is a fitting parameter, ω the phonon angular frequency, and θD the Debye temperature. 

 

The relaxation time for the grain boundary scattering is: 

 
1

𝜏𝐺𝐵
=

𝑣𝑆

𝑑
 (S24) 

where vs the average sound speed and d is the average grain size. 

 

Since the value of B is not significantly changed by the Cr addition, the lattice thermal 

conductivity is found to depend on the value of A. The precise values of A and B were 

determined by fitting the equation S20-24 to the lattice thermal conductivity data. The resulting 

fitting parameter values for the calculated lattice thermal conductivity are presented in Table 

S3. 

 

Table S3. Fitting parameters of calculated lattice thermal conductivity using Debye-Callaway 

model. 

x A (×10-42 s3) B (×10-17 sK-1) 

0 0.0013 2.9933 

0.02 2.7458 3.1305 

0.04 5.3899 3.1058 

0.06 7.9316 3.0353 

0.08 10.3702 3.0311 
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