In situ-engineered interfaces in copper oxynitride $(Cu_xO_yN_z)$ systems with synergistic properties for photocatalytic H₂ production and N₂ fixation applications

Mithun Prakash Ravikumar,¹ Toan-Anh Quach,² Bharagav Urupalli,³ Mamatha Kumari

Murikinati,³ Shankar Muthukonda Venkatakrishnan,³ Trong-On Do,² and Sakar Mohan^{1,*}

¹Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India.

²Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada.

³Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India.

*Corresponding author: <u>m.sakar@jainuniversity.ac.in</u>

Table S1. Crystal structure parameters obtained from the Rietveld refinements of XRD patterns of the synthesized bare copper oxide (CuO), O_{rich} -Cu_x O_yN_z (Cu200), N_{rich} -Cu_x O_yN_z (Cu250), and Cu_{rich}-Cu_x O_yN_z (Cu350) systems.

Parame ters	CuO (Oxide)	Cu200 (O _{rich} - Cu _x O _y N _z)		$\frac{Cu250}{(N_{rich}- Cu_xO_yN_z)}$			$\frac{Cu350}{(Cu_{rich}-Cu_xO_yN_z)}$			
Phase (%)	CuO 100	CuO 74.7	Cu₃N 18.2	Cu 7.1	CuO 33.7	Cu ₃ N 56.9	Cu 9.4	CuO 61.6	Cu ₃ N 22.2	Cu 16.2
Crystal structure	Monocli nic	Mon oclin ic	Cubic	FCC	Mono clinic	Cubic	FCC	Mono clinic	Cubic	FCC
Space group	C2/c (#15-1)	C2/c (#15 -1)	Pm- 3m (#221 -1)	Fm- 3m	C2/c (#15- 1)	Pm- 3m (#221 -1)	Fm- 3m	C2/c (#15- 1)	Pm- 3m (#221- 1)	Fm- 3m
a (Å)	4.68	4.69	3.81	3.61	4.67	3.81	3.61	4.68	3.81	3.62
b (Å)	3.42	3.43	3.81	3.61	3.43	3.81	3.61	3.43	3.81	3.62

c (Å)	5.13	5.14	3.81	3.61	5.13	3.81	3.61	5.14	3.81	3.62
α (°)	90.00	90.0 0	90.00	90.00	90.00	90.00	90.00	90.00	90.00	90.00
β (°)	99.41	99.0 7	90.00	90.00	99.32	90.00	90.00	99.09	90.00	90.00
γ (°)	90.00	90.0 0	90.00	90.00	90.00	90.00	90.00	90.00	90.00	90.00
Volume (Å ³)	81.09	81.7 1	55.52	47.18	80.98	55.26	47.18	81.50	54.38	47.46
R-factor	3.9	2.9	4.2	3.9	2.3	4.63	3.6	2.8	4.6	3.7
R _P	4.8	4.8	4.7	6.9	4.9	4.6	7.1	4.5	5.3	7.3
R _{WP}	6.0	6.0	5.4	8.7	5.9	5.4	8.4	5.9	5.8	9.3
χ^2	1.3	1.5	1.4	1.3	1.4	1.8	1.6	1.1	1.6	1.2
Cu-Cu bond length (Å)	-	-	-	3.62	-	-	-	-	-	3.62
Cu-Cu bond angle (°)	-	-	-	90.00	-	-	-	-	-	90.00
Cu-O bond length (Å)	1.95	1.98	-	-	1.93	-	-	1.94	-	-
Cu-N bond length (Å)	-	-	1.91	-	-	1.92	-	-	1.90	-
O-Cu-O bond angle (°)	95.59	96.3 2	-	-	94.67	-	-	95.78	-	-
Cu-N- Cu bond angle (°)	-	-	90.00	-	-	90.00	-	-	90.00	-

Sample	Binding energy of Cu 2p _{3/2} (eV)	FWHM (eV)	Area (CPS/eV)	Atomic % (at%)	Formula determined	
CuO	CuO: 934.4	3.15	202062	3.42		
	Cu ₂ O: 933.0	2.08	93335	1.58	CuO	
Cu200	CuO: 934.6	3.75	284567	3.93	CuO _{4.57} N _{0.09}	
	Cu ₃ N: 933.7	2.03	111091	1.53		
	Cu: 932.7	1.16	45340	0.63		
Cu250	CuO: 934.8	3.16	135585	2.09	CuO _{4.07} N _{0.38}	
	Cu ₃ N: 933.4	2.30	158181	2.44		
	Cu: 932.6	1.09	20948	0.32		
Cu350	CuO: 935.2	3.46	228767	1.82		
	Cu ₃ N: 934.4	1.72	109368	0.88	CuO _{0.55} N _{0.03}	
	Cu: 932.1	2.06	312878	2.51		

Table S2. Parameters obtained from the XPS analysis of the synthesized bare copper oxide (CuO), O_{rich}-Cu_xO_yN_z (Cu200), N_{rich}-Cu_xO_yN_z (Cu250), and Cu_{rich}-Cu_xO_yN_z (Cu350) systems.