Supporting information

Selenium-doped hematite (α -Fe₂O₃) hollow nanorods for highly sensitive and selective detection of trace NO₂

Tingting Liang,^{a,c} Yan Li,^a Xu Zhang,^a Hongwei Bao, ^a Fengnan Li,^d Xueqian Liu, ^b Zhengfei Dai,^a and Hang Liu ^{a,b*}

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

^b Superconducting Materials Research Center, Northwest Institute for Non-ferrous

Metal Research, Xi'an 710016, China

° School of Materials Science and Engineering, Henan University of Science and

Technology, Luoyang 471023, China

^d Institute of wide band gap semiconductors, Xi'an Jiaotong University, Xi'an 710049,

China

*Corresponding author: liuhangnwpu@gmail.com

S1. Calculation of the detection limit of the gas sensor:

The detection limit of this Se-Fe₂O₃ sensor can be calculated as follows:

$$S = AC^{\beta} + 1 \tag{1}$$

Where A is the constant, C is the concentration of the target gas with the unit of ppm. The power exponent β is the parameter (usually from 0.5 to 1) depending on the charge of the surface species and the stoichiometry of the elementary reactions on the surface. When the relationship between the sensing signals and the concentrations is linear (shown in Fig. 4f), the Eqn. (1) can be written as:

$$S = 0.89 \times C + 1$$
 (2)

Therefore, the potential detection limit can be predicted from the Eqn. (2). If there is no noise, a slight change of the acquired signal can validate the existence of a gas when the ambient atmosphere is unchanged. Here, the detectable lower limit of the target gas concentration can be reasonably predicted on basis of the present signal-to-noise ratio. In Fig.4 (e), the noise signal N is found to be ~ 0.008. The standard requirement of the detection limit is (S-1)/N>3. Consequently, the response signal must be larger than 0.024 or the value of the sensing signal must be >1.024. From the Eqn. (2), the corresponding concentration can be estimated to be ~ 27 ppb with a signal of 1.024 when the drift of the sensor baseline is significantly lower. It means the detection limit of concentration to NO₂ is ~ 27 ppb at 130 °C.

S2. Electrical humidity sensing test:

The humidity sensing properties were tested in a home-built dynamic sensing system with gas flow controllers (500 sccm). The different humidity was generated by mixing the dry air and wet air (from saturated K_2SO_4 solution, 60%RH). The electrical resistance of sensing device was measured by Keithley DMM6500 digital multimeter. The humidity response was calculated by the value of R_{humid}/R_{air} , where R_{air} and R_{humid} are the sensor resistance under air and humid ambient.

Fig. S1 (a) DOS and (b) band curves of Fe_2O_3 .

Fig. S2 The d-band centers of the Fe site in (a) Fe_2O_3 and (b) Se- Fe_2O_3 .

Fig. S3 The systems adsorbed with four kinds of gases on the surface of Fe_2O_3 : (a) H_2S , (b) NH_3 , (c) SO_2 , and (d) NO_2 , respectively.

Fig. S4 The systems adsorbed with four kinds of gases on the surface of Se-Fe₂O₃: (a) H_2S , (b) NH₃, (c) SO₂, and (d) NO₂, respectively.

System	gas	E_{DFT}^{gas} (eV)	$E_{DFT}(eV)$	$E^{gas(g)}_{DFT}$ (eV)	$\Delta E_{gas}^{*}(eV)$
	H_2S	-462.85507	-451.04389	-11.251118	-0.56006
Fe ₂ O ₃	NH ₃	-471.55893	-451.04389	-19.57326	-0.94178
	SO ₂	-468.70645	-451.04389	-17.167812	-0.49475
	NO ₂	-471.01165	-451.04389	-18.429656	-1.5381
	H_2S	-453.27378	-440.69052	-11.251118	-1.33214
Se- Fe ₂ O ₃	NH ₃	-461.55718	-440.69052	-19.57326	-1.2934
	SO_2	-459.27424	-440.69052	-17.167812	-1.41591
	NO ₂	-460.98534	-440.69052	-18.429656	-1.86516

Table S1. The details of DFT calculation values of adsorption energies of each systems.

Fig. S5 Bader distribution of the systems adsorbed with NO_2 on the (a) Fe_2O_3 and (b) Se-Fe_2O_3, respectively.

Table S2. Doping content of Se in the Se-Fe₂O₃ samples obtained from ICP-MS tests.

		Sample number				
Items information		Se-Fe ₂ O ₃ -1	Se-Fe ₂ O ₃ -2	Se-Fe ₂ O ₃ -3		
Se	mol %	0.8 %	1.0 %	1.6 %		

Figure S6 Tingting Liang et al.

Fig. S6 The SEM images of (a) Fe_2O_3 (the right panels are histogram distribution of the length and the width of the nanorod), (b) Se-Fe₂O₃-1, and (c) Se-Fe₂O₃-3, respectively.

Fig. S7 XPS spectra of (a) Fe 2p and (b) O 1s of the Fe₂O₃ hollow nanorods.

Figure S8 Tingting Liang et al.

Fig. S8 CV curves of the samples: (a) Fe₂O₃, (b) Se-Fe₂O₃-1, and (c) Se-Fe₂O₃-3.

Fig. S9 The BET data of the (a) Fe_2O_3 , (b) $Se-Fe_2O_3-1$, (c) $Se-Fe_2O_3-2$, and (d) $Se-Fe_2O_3-3$, respectively.

Fig. S10 The schematic diagram of the dynamic gas sensing test process.

Figure S11 Tingting Liang et al.

Fig. S11 The response of the Fe_2O_3 nanorods at different temperature: (a) 100 °C, (b) 110 °C, (c) 130 °C, and (d) 150 °C, respectively.

Figure S12 Tingting Liang et al.

Fig. S12 The response of the Se-Fe₂O₃-1 sample at different temperature: (a) 100 °C,
(b) 110 °C, (c) 130 °C, and (d) 150 °C, respectively.

Figure S13 Tingting Liang et al.

Fig. S13 The response of the Se-Fe₂O₃-3 sample at different temperature: (a) 100 °C, (b) 110 °C, (c) 130 °C, and (d) 150 °C, respectively.

Table S3. Comparison of response values of Fe_2O_3 and $Se-Fe_2O_3$ samples under 10 and 20 ppm NO_2 .

	100)°C	110) °C	130 °C		150 °C	
Unit: ppm	10	20	10	20	10	20	10	20
Fe ₂ O ₃	4	4.5	4.3	5.1	4.8	6.0	4.2	5.1
Se-Fe ₂ O ₃ -1	7.3	9.3	8.2	10.4	10.7	13.3	7.4	10.0
Se-Fe ₂ O ₃ -2	8.7	9.4	9.3	14.3	11.3	17.1	8.0	10.6
Se-Fe ₂ O ₃ -3	4.3	6.4	4.4	6.7	5.1	7.8	4.6	6.8

Sample	NO ₂ (ppm)	T (°C)	Rg/Ra	$t_{res}/t_{rec}(s/s)$	LOD(ppb)	Ref
Ag-Fe ₂ O ₃ @MoS ₂	10	120	230.1% ^①	140/332	1	1
Cu-Fe ₂ O ₃	50	300	2.59	110/278	5000	2
ZnO/a-Fe ₂ O ₃	20	175	54	26/185	79	3
α-Fe ₂ O ₃ /BiVO ₄	2	110	7.8		500	4
α-Fe ₂ O ₃ -RGO	1	RT	3.1	472/2826		5
γ-Fe ₂ O ₃ @RGO	100	200	6.86	1.25/	100	6
Se-Fe ₂ O ₃	10	130	11.3	7/14	27	Present work

Table S4. Comparison of sensing performance based on the nanostructures towards NO₂ gas sensing in the previous literatures.

(1) S= $|Ra-Rg|/Ra \times 100\%$ or S= $|Rg-Ra|/Ra \times 100\%$

Figure S14 Tingting Liang et al.

Fig. S14 The long-time stability test of the Se-Fe₂O₃-2 sample for 20 days.

Figure S15 Tingting Liang et al.

Fig. S15 The response of the Se-Fe₂O₃-2 sample under dry air and wet air background, respectively.

References

- M. Yin, Y. Wang, L. Yu, H. Wang, Y. Zhu, C. Li, J. Alloy. Compd., 2020, 829, 154471.
- 2 R. Wu, C. Lin, W. Tseng, Ceram.Int., 2017, 43, S535-S540.
- 3 S. C. Zhang, L. H. Zhou, Y. H. Hu, X. H. Liu, J. Zhang, Sens. Actuators B Chem., 2023, 396.
- 4 S. Bai, K. Tian, H. Fu, Y. Feng, R. Luo, D. Li, A. Chen, C. C. Liu, *Sens. Actuators B Chem.*, 2018, 136-143.
- 5 Y. Zhang, Z. Yang, L. Zhao, T. Fei, S. Liu, T. Zhang, J. Colloid Interface Sci., 2022, 612, 689-700.
- 6 C. Zou, J. Hu, Y. J. Su, Z. H. Zhou, B. F. Cai, Z. J. Tao, T. T. Huo, N. T. Huo, Y.
 F. Zhang, Sens. Actuators B Chem., 2020, 306, 127546.