Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

## **Supporting Information**

The Role and Evolutionary Pathway of Spin States in CoFe Prussian blue analogue for Photo-Assisted Water Oxidation Electrocatalysis

Dujie Feng,<sup>a</sup> Yi Zhou,\*a Wanhong He,\*a Jin Zhang,<sup>b</sup> Guihua Huang,<sup>a</sup> Yiming Shao<sup>a</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China. E-mail: 008639@csust.edu.cn

<sup>b</sup>School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China.

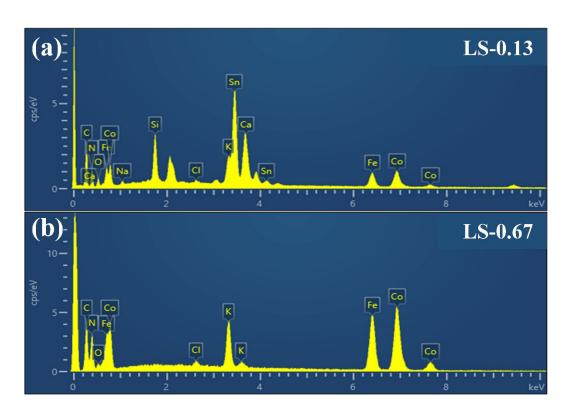



Fig. S1. The EDS profiles of LS-0.13 and LS-0.67.

Table S1. The lattice constant obtained through the Bragg equation

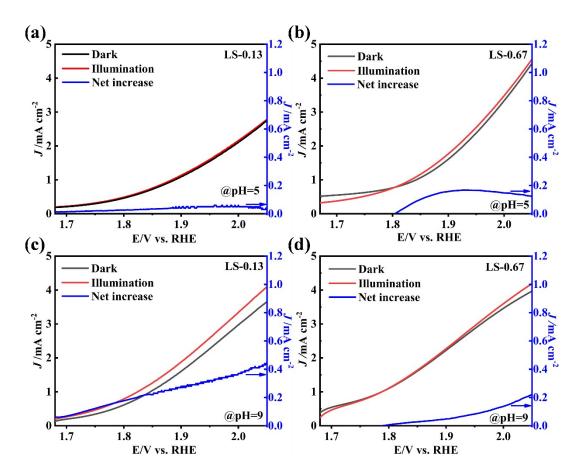
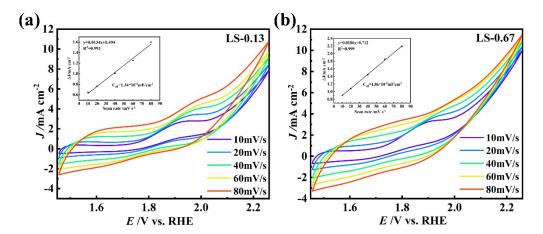
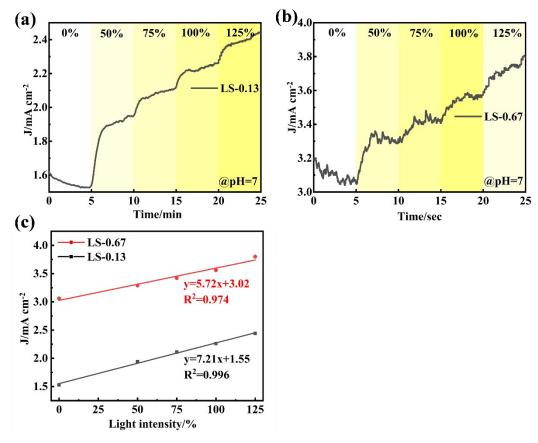
| Sample       | Lattice constant (Å) |
|--------------|----------------------|
| LS-0.13      | 9.9051±0.0097        |
| LS-0.13-Used | $9.8742 \pm 0.0036$  |
| LS-0.67      | $9.8633 \pm 0.0089$  |
| LS-0.67-Used | $9.8583 \pm 0.0028$  |

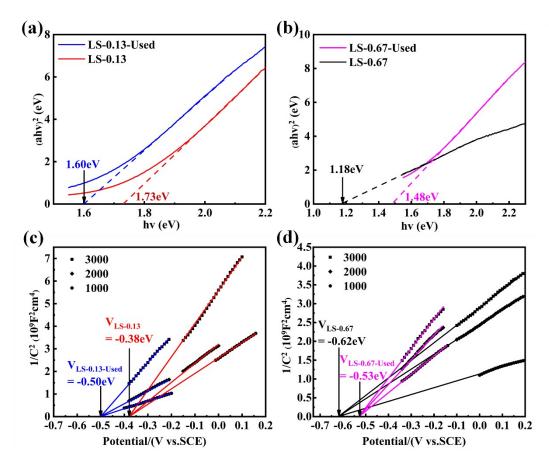
Table S2. Results of deconvolution of the vibration absorptions of the CN groups for CoFe PBAs.

| Sample       | The corresponding spin state              | Average center of the peak | The molar ratio of<br>the corresponding<br>spin state |  |
|--------------|-------------------------------------------|----------------------------|-------------------------------------------------------|--|
| LS-0.13      | LS Co <sup>III</sup> -NC-Fe <sup>II</sup> | 2115.0                     | 13.56%                                                |  |
|              | Co <sup>II</sup> -NC-Fe <sup>II</sup>     | 2090.0                     | 86.44%                                                |  |
| LS-0.13-Used | LS Co <sup>III</sup> -NC-Fe <sup>II</sup> | 2123.8                     | 33.19%                                                |  |
|              | Co <sup>II</sup> -NC-Fe <sup>II</sup>     | 2077.6                     | 66.81%                                                |  |
| LS-0.67      | LS Co <sup>III</sup> -NC-Fe <sup>II</sup> | 2120.7                     | 67.27%                                                |  |
|              | Co <sup>II</sup> -NC-Fe <sup>II</sup>     | 2086.5                     | 32.73%                                                |  |
| LS-0.67-Used | LS Co <sup>III</sup> -NC-Fe <sup>II</sup> | 2117.3                     | 30.38%                                                |  |
|              | Co <sup>II</sup> -NC-Fe <sup>II</sup>     | 2086.5                     | 69.62%                                                |  |

**Table S3.** The peak information and molar percentages of ions with different oxidation states derived from XPS analysis.

| Element  |           | Fe 2p <sub>3/2</sub>  |                       | Fe 2p <sub>1/2</sub> |                   |                  | Co 2p <sub>3/2</sub> |                       |                       | Co 2p <sub>1/2</sub>  |                 |                  |                   |              |         |
|----------|-----------|-----------------------|-----------------------|----------------------|-------------------|------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------|------------------|-------------------|--------------|---------|
|          |           | Fe <sup>2+</sup>      | Fe <sup>3+</sup>      | <br> <br>  sat.      | Fe <sup>2+</sup>  | Fe <sup>3+</sup> | <br> <br>  sat.<br>  | Co <sup>3+</sup>      | Co <sup>2+</sup>      | sat.                  | LM<br>M         | Co <sup>3+</sup> | Co <sup>2+</sup>  | sat.         | LM<br>M |
|          | Peak      | i<br>i                | l<br>I                | l                    | l<br>I            |                  | l<br>I               | l                     | l<br>I                | l<br>I                | l<br>I          | I<br>I           | l<br>I            | l<br>I       | l       |
|          | position  | 708.6                 | 709.9                 | 711.5                | 721.4             | 722.7            | 724.2                | 780.5                 | 782.6                 | 785.8                 | 789.2           | ¦795.7           | 797.8             | 8.008        | 804.3   |
| LS-0.13  | (eV)      | !<br>!                | l<br>I                | <br>                 | l<br>I            | l<br>I           | l<br>I               | <br>                  | l<br>I                | <br>                  | l<br>I          | I<br>I           | l<br>I            | l<br>I       | l<br>I  |
| LS-0.13  | molar     | T — — -<br>I          | г — — ·<br>I          | Г — —<br>I           | I — — ·           | г — —<br>I       | Г — —<br>I           | l<br>L – –            | ı                     | ı_                    | ı<br>I          | ı — — —          | ı — — —<br>I      | ı — — —<br>I | I — — — |
|          | percentag | 46.5                  | 13.1                  | 4.5                  | 23.2              | 6.6              | 6.1                  | 5.1                   | 39.7                  | 13.8                  | 9               | 2.6              | 19.8              | 6.2          | 3.8     |
|          | e (%)     | I<br>I                | I<br>I                | l<br>l               | l<br>I            | l<br>I           | l<br>I               | l<br>I                | I<br>I                | I<br>I                | I<br>I          | I<br>I           | I<br>I            | I<br>I       | I<br>I  |
|          | Peak      | 1                     | ı — — —               | ı — — —<br>I         | ı — — —           |                  | I — — -              | T — — -<br>I          | T — — ·               | I — — ·               | Ι – –           | Ι – –            | I – –             | ı – –        | ı – –   |
| LS-0.13- | position  | 708.6                 | 709.9                 | 712                  | 721.4             | 722.7            | 724.1                | 780.8                 | 782.6                 | 785.1                 | 788.5           | 795.5            | 797.6             | 799.4        | 802.2   |
|          | (eV)      | <br>                  | <br>                  | l<br><u>l</u>        | l<br><u>l</u>     | <br>             | I<br>I               | I<br>I                | <br>                  | I<br>I                | <br>            | !<br>!           | <br>              | <br>         | <br>    |
| Used     | molar     | 1                     | l —                   | Г — —<br>I           | l –               |                  | Г — —<br>I           | Г — —<br>I            | I                     | I                     | I – –<br>I      | <br>             | I — — —           | I — — —      | I — — — |
|          | percentag | 49.9                  | 111.6                 | 2                    | 24.9              | 5.8              | 5.8                  | 7.9                   | 38.8                  | 13.5                  | 8.1             | 4                | 19.4              | 6            | 2.3     |
|          | e (%)     | <br>                  | !<br>!<br>. – – –     | !<br>!<br>. – – –    | !<br>!            | !<br>!           | !<br>!<br>           | <br> -<br> -          | <br> <br><del>-</del> | <br>                  | !<br>!          | !<br>!<br>       | !<br>!            | I<br>        | <br>    |
|          | Peak      | <br>                  | <br>                  | <br>                 | <br>              |                  | <br>                 | <br>                  | <br>                  | <br>                  | <br>            | [<br>[           | <br>              | <br>         | <br>    |
|          | position  | 708.5                 | 709.7                 | 711.8                | 721.3             | 722.6            | 723.9                | 780.6                 | 782.6                 | 785.6                 | 789.1           | 795.8            | 797.8             | 800.4        | 804.5   |
| LS-0.67  | (eV)      | <br> <br><del>-</del> | <br>                  | <br> -<br>           | <br>              | <br> -<br>       | <br>                 | I<br>I                | <br>                  | <br> <br>             | <br> <br>       | !<br>!<br>       | !<br>!<br>. – – – | !<br>!       | <br>    |
| L3-0.07  | molar     | <br>                  | l<br>I                | l<br>I               | <br>              |                  | <br>                 | <br>                  | <br>                  | <br>                  | <br>            | <br>             | <br>              | <br>         | <br>    |
|          | percentag | 53.4                  | 7.9                   | 2.1                  | 26.7              | 4                | 6                    | 14.9                  | 33.6                  | 12.4                  | 8.7             | 7.4              | 16.8              | 4            | 2.2     |
|          | e (%)     | <br> <br>             | I<br>!<br>. – – –     | <br> <br>            | !<br>!<br>. – – – | <br> <br>        | <br> <br>            | <br> <br><del> </del> | <br> <br><del> </del> | <br> <br><del> </del> | !<br>!<br>= = = | !<br>!<br>= = =  | <br>              | <br>         | <br>    |
|          | Peak      | <br>                  | l<br>I                | l<br>I               | <br>              |                  | l<br>I               | l<br>I                | <br>                  | <br>                  | <br>            | <br>             | <br>              | <br>         | <br>    |
|          | position  | 708.5                 | 710                   | 711.8                | 721.3             | 722.8            | 724.2                | 780.8                 | 782.6                 | 785.6                 | 788.8           | 795              | 797.6             | 800.1        | 803.6   |
| LS-0.67- | (eV)      | <br>                  | <br> <br><del> </del> | <br>                 | <br>              | <br>             | <br> <br>            | <br> <br>             | !<br>!                | !<br>!                | !<br>!          | !<br>!           | !<br>!            | !<br>!       | !<br>!  |
| Used     | molar     | !<br>                 | <br>                  | <br>                 | !<br>             | !<br>!           | !<br>                | <br>                  | !<br>                 | !<br>                 | !<br>           | !<br>            | !<br>             | !<br>        | !<br>   |
|          | percentag | 46.4                  | 11.4                  | 6.5                  | 23.2              | 5.7              | 6.8                  | 7.4                   | 36.3                  | 14.8                  | 9.7             | 3.7              | 18.2              | 6.4          | 3.5     |
|          | e (%)     | I<br>I                | I<br>I                | I<br>I               | l<br>I            | l                | I<br>I               | I<br>I                | I<br>                 | !<br>                 | !<br>           | !<br>            | l<br>I            | l<br>I       | !<br>   |



Fig. S2 LSV curves and net photocurrent density for (a, c) LS-0.13 and (b, d) LS-0.67 at different pH values.



**Fig. S3**. Cyclic voltammograms and double-layer capacitance plots of (a) LS-0.13 and (b) LS-0.67 at different scan rates in a 0.1 M KPi + 1 M KNO<sub>3</sub> electrolyte at pH=7.



**Fig. S4.**The CA curves of(a) LS-0.13 and (b) LS-0.67 under a constant voltage of 2.0 V vs. RHE, with increasing light intensity at an interval of 300 s. (c) The linear relationship between light intensity and current density.



**Fig. S5**. (a, b) Energy band gap and (c, d) Mott-Schottky plots of CoFe PBAs with different LS ratio preand post-photo-assisted OER process.

**Table S4.** The band structure data of CoFe PBAs.

| Sample       | $\mathbf{E}_{\mathbf{g}}$ | V <sub>fb</sub> vs. SCE | V <sub>fb</sub> vs. RHE | E <sub>CB</sub> | $\mathbf{E}_{\mathbf{VB}}$ |
|--------------|---------------------------|-------------------------|-------------------------|-----------------|----------------------------|
| LS-0.13      | 1.73                      | -0.38                   | 0.28                    | 0.18            | 1.91                       |
| LS-0.13-Used | 1.60                      | -0.50                   | 0.16                    | 0.06            | 1.66                       |
| LS-0.67      | 1.18                      | -0.62                   | 0.04                    | -0.06           | 1.12                       |
| LS-0.67-Used | 1.48                      | -0.53                   | 0.13                    | 0.03            | 1.51                       |

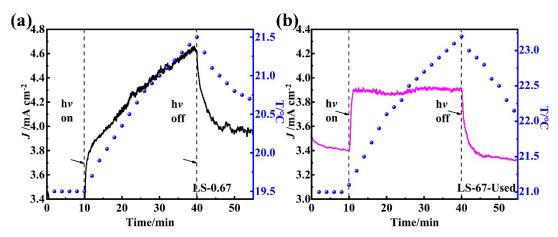



Fig. S6. Comparison of the change of temperature and the current density profiles for (a) LS-0.67 and (b) LS-0.67-Used. The measurements were conducted at 2.0 V vs. RHE, in a 0.1 M KPi + 1 M KNO₃ electrolyte at pH 7. The electrodes were irradiated by a 100 mW⋅cm⁻² Xenon light for 30 min. For both as-prepared LS-0.67 and LS-0.67-Used, the changes in the temperature-time curve and the I-t curve showed different trends. In the light-on stage, the current density of LS-0.67 increased rapidly in the very beginning, but the temperature increased gradually during the whole stage. Upon turning off the light, the current density of LS-0.67 decreased fast in the first 5 min and then decayed very slowly, while the temperature decreased approximately linearly. For LS-0.67-Used, the current density kept constantly during the light irradiation stage whereas the temperature kept increasing. After turning off the light, the current density of LS-0.67-Used dropped rapidly while the temperature decreased linearly. Thus, the experiments indicate that the thermal effect had little impact on the current density.