Electronic Supplementary Information

Simultaneous enhancement of magnetocaloric and magnetodielectric

effect in MnCo₂O₄ spinels by varying Co/Mn ratio

Ruixia Ti,*^{ab} Chaoyang Wang,^{ab} Huarui Wu,^{ab} Chenyang Zhang,^c Shujie Sun,*^d Na Li,^{ab} Yun Su,^{ab} Bin Wang,^{ab} Zezhang Chen*^{ab} and Yan Wang^{ab}

^a School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China

^b Henan Province Engineering Research Center of New Energy Storage System, Xinxiang University, Xinxiang 453003, China

^c School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China

^d Henan Collaborative Innovation Center of Energy-Saving Building Materials,
Xinyang Normal University, Xinyang 464000, China

* Corresponding Author: tiruixia@yeah.net, sjsun@xynu.edu.cn,

zezhangchen@126.com

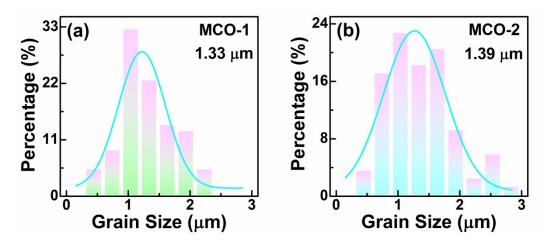
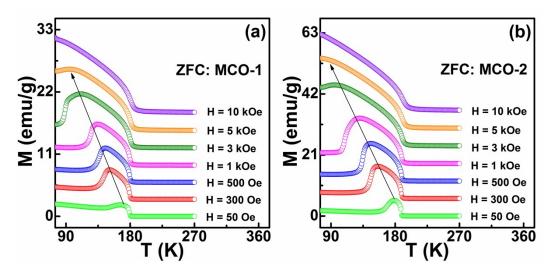
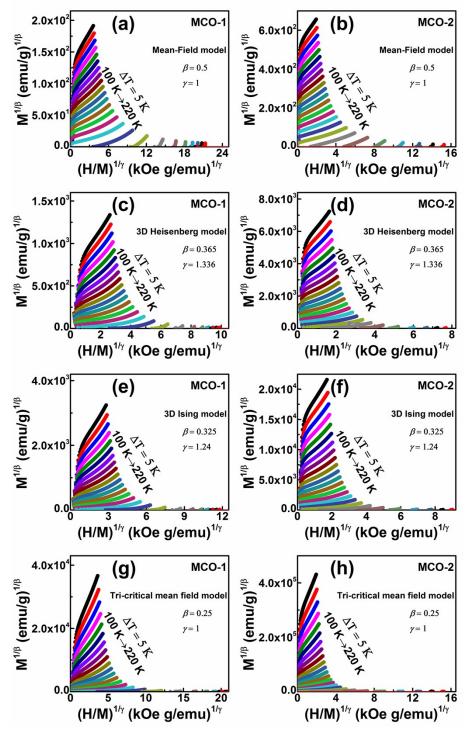




Fig. S1 The grain size distribution of (a) MCO-1 and (b) MCO-2 ceramics.

Fig. S2 Magnetization as a function of temperature measured at various magnetic fields under ZFC process for (a) MCO-1 and (b) MCO-2 ceramics.

Fig. S3 Modified Arrott plots (MAP) with the (a)-(b) mean-field model (β =0.5, γ =1), (c)-(d) 3D Heisenberg model (β =0.365, γ =1.336), (e)-(f) 3D Ising model (β =0.325, γ =1.24), and (g)-(h) tri-critical mean field model (β =0.25, γ =1) for MCO-1 and MCO-2 ceramics, respectively.

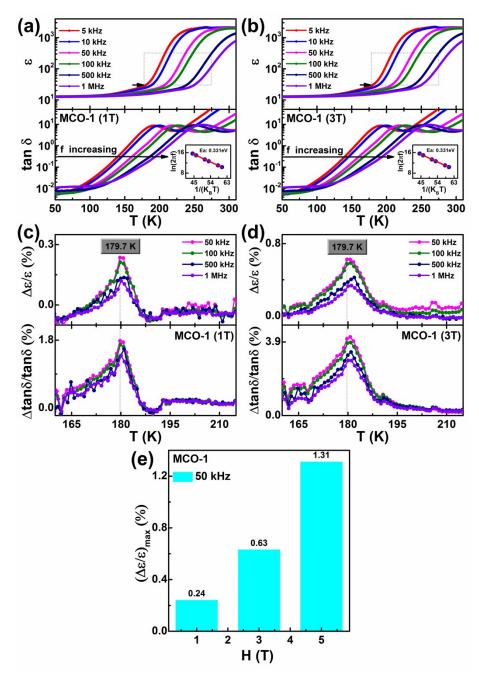


Fig. S4 Temperature dependent ε and tan δ of MCO-1 ceramics measured at various frequencies under (a) 1 T and (b) 3 T magnetic fields. The insets give the relation between $\ln(2\pi f)$ and $1/(k_B T)$ according to the Arrhenius law for dielectric relaxation in the temperature range of 190-270 K. (c)-(d) The corresponding variations of ε and tan δ for pure-MCO ceramics measured at various frequencies. (e) The comparison of the maximum values for $\Delta \varepsilon/\varepsilon$ (%) at 50 kHz.

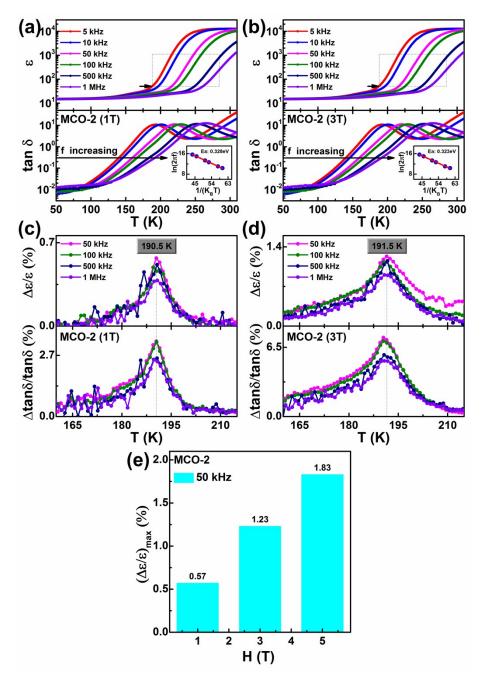


Fig. S5 Temperature dependent ε and tan δ of MCO-2 ceramics measured at various frequencies under (a) 1 T and (b) 3 T magnetic fields. The insets give the relation between $\ln(2\pi f)$ and $1/(k_B T)$ according to the Arrhenius law for dielectric relaxation in the temperature range of 190-270 K. (c)-(d) The corresponding variations of ε and tan δ for doped-MCO ceramics measured at various frequencies. (e) The comparison of the maximum values for $\Delta \varepsilon / \varepsilon$ (%) at 50 kHz.