Supporting Information for

Possible gapless spin-liquid state in the Fe-based halide perovskite Cs4BiFeBr₁₀ derived from antiferromagnet CsFeBr₄

Figure S1. a and **b**, Curie-Wiess fitting of $1/\chi$ -T curves for Cs₄BiFeBr₁₀ and CsFeBr₄ single crystals, respectively.

Figure S2. Temperature dependence of magnetic susceptibility for Cs₄BiFeBr₁₀.

Figure S3. M-H curve cycle of $Cs_4BiFeBr_{10}$ single crystal at 2 K. The scanning process of the magnetic field: $0T \rightarrow 7T \rightarrow 0T \rightarrow (-7T) \rightarrow 0T \rightarrow 7T$.

Figure S4. Curve fitting of C_p/T vs T^2 in the range of 6-10 K based on Debye model for Cs₄BiFeBr₁₀ (**a**) and CsFeBr₄ (**b**) single crystals, respectively.

Figure S5. a, the synthesized $Cs_4BiFeBr_{10}$ single crystals; **b**, the synthesized $CsFeBr_4$ single crystals.

		Distance of Br-Br	Angle of Fe- Br…Br	Angle of Br…Br-Fe	Torsion angle of Fe- Br…Br-Fe	
Cs4BiFeBr10	J_1	3.83 Å	147.6°	147.6°	0°	
	J_2	4.09 Å	92.6°	141°	58.3°	
		Distance of Br-Br	Angle of Cu-Br…Br	Angle of Br…Br-Cu	Torsion angle of Cu- Br…Br-Cu	2J/k (K)
$C_8H_{20}N_2O_2CuBr_4$		3.82 Å	140°	151.5°	53°	-42.6
$C_{10}H_{14}N_6O_5CuBr_4$		4.07 Å	92.3°	148.6°	7.6°	-20.4

Table S1: A comparison of the structural parameters of the two magnetic exchange paths in Cs₄BiFeBr₁₀ with those of the similar Cu-based antiferromagnetic systems.

Table S2: A comparison of the structural parameters of the two magnetic exchange paths in CsFeBr₄ with those of the similar Cu-based antiferromagnetic systems.

		Distance of Br-Br	Angle of Fe-Br…Br	Angle of Br…Br-Fe	Torsion angle of Fe- Br…Br-Fe	
CsFeBr ₄	\mathbf{J}_1	3.78 Å	143.4°	143.4°	0°	
	J_2	4.25 Å	85.3°	117.1°	65°	
		Distance of Br-Br	Angle of Cu-Br…Br	Angle of Br…Br-Cu	Torsion angle of Cu- Br…Br-Cu	2J/k (K)
$C_8H_{20}N_2O_2CuBr_4$		3.82 Å	140°	151.5°	53°	-42.6
$C_{10}H_{16}N_4I_2O_2CuBr_4$		4.23 Å	95°	129°	98°	-1.15