Electronic Supplementary Information

Fluorine-free "solvent-in-Salt" sodium battery electrolytes: Solvation structure and dynamics

Yanqi Xu^{*a*}, Andrei Filippov^{*a*}, Sourav Bhowmick^{*a*}, Patrik Johansson^{**bc*} and Faiz Ullah Shah^{*a}

^aChemistry of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden
^bDepartment of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
^cALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie
15, rue Baudelocque, 80039 Amiens, France

*Corresponding authors: patrik.johansson@chalmers.se faiz.ullah@ltu.se

Figure S1. DSC traces of (a) SIS80 from -80 to 100 °C at 1 and 5 °C ·min⁻¹, and (b) the NaDEEP salt, the TEOP solvent, and selected SIS*XX* electrolytes from -80 to 100 °C at 5 °C ·min⁻¹.

Figure S2. Ionic conductivities for (a-e) the SIS*XX* electrolytes and (f) NaDEEP as a function of temperature.

Figure S3. Ionic conductivities for the SIS50 electrolyte during heating-cooling-heating cycle.

Figure S4. Anodic (a) and cathodic (d) LSV scans of TEOP solvent, SIS60, SIS90 and NaDEEP salt using a GC WE.

Figure S5. Deconvolution the P=O stretching vibrational mode for the SIS60 and SIS80 electrolytes.

Figure S6. ³¹P NMR spectra of (e) the NaDEEP salt, (f) the TEOP solvent, and (a-d) the SISXX electrolytes.

Figure S7. ²³Na NMR spectra of (f) the NaDEEP salt and (a-e) the SISXX electrolytes.

Figure S8. Experimental ¹H diffusion decay at 303 K and a two-component fitting for the SIS50 electrolyte.

Figure S9. Diffusion coefficients obtained by the decomposition of ¹H NMR diffusion decays and ³¹P NMR lines decays for (a-e) the SIS*XX* electrolytes and (f) the NaDEEP salt.

(I_{decomp}) and glass transition (I_g) temperatures.					
	Sample	T_{decomp} (°C)	T_g (°Č)		
	NaDEEP	225	-41		
	TEOP	237	-85		
	SIS50	236	-83		
	SIS60	241	-82		
	SIS70	249	-80		
	SIS80	270	/		
	SIS90	200	/		

Table S1. Thermal decomposition (T_{decomp}) and glass transition (T_g) temperatures.

Table S2. VFT equation parameters and apparent activation energies for ionic conductivities for SIS*XX* electrolytes and NaDEEP.

System	$\sigma_0 ({ m m^{2/s}})$	$B(\mathbf{K})$	T_0 (K)	$E_{\sigma}(kJ/mol)$
SIS50	0.0018	1005	150	8.4
SIS60	0.0027	994	154	8.3
$SIS70^*$	0.0063	1050	160	8.7
SIS80	0.0122	918	162	7.6
SIS90	0.0467	1096	156	9.1
NaDEEP	0.2175	1428	155	11.9

* Only elevated temperature conductivity data were used in the VFT equation fit.

Sample	Anodic limit at 20 °C (V vs. Na/Na ⁺)	Cathodic limit at 20 °C (V vs. Na/Na ⁺)
TEOP	7.51	1.50
SIS50	7.82	1.74
SIS60	6.96	0.28
SIS70	6.61	1.46
SIS80	6.50	/
SIS90	5.84	/
NaDEEP	5.45	/

Table S3. Electrochemical stability of the TEOP solvent, the SISXX electrolytes and the NaDEEP salt. Anodic and cathodic limits set to current density = ± 0.1 mA cm⁻².

Table S4. Electrochemical stability of the TEOP solvent, the SIS60 and SIS90 electrolytes, and the NaDEEP salt at 20 °C and a current density of 0.05 mA cm⁻².

	Pt WE		GC WE		
Sample	Anodic limit (V vs. Na/Na ⁺)*	Cathodic limit (V vs. Na/Na ⁺)*	Anodic limit (V vs. Na/Na ⁺)*	Cathodic limit (V vs. Na/Na ⁺)*	
TEOP	6.93	2.85	8.16	-2.65	
SIS60	6.37	1.59	10.64	-5.76	
SIS90	5.49	/	6.13		
NaDEEP	5.36	/	5.37		

Systems	Sub-system	$D_0 imes 10^{-9}$	В	T_{0}	$E_{\rm P}$ (kI/mol)
Systems	Sub System	(m^{2}/s)	(K)	(K)	
	Solvent-rich	1.44	356	225	3.0 ± 0.05
SIS50	Salt-rich	6.7	1100	175	9.1 ± 0.1
CIC (A	Solvent-rich	1.44	356	232	3.0 ± 0.05
\$1\$60	Salt-rich	3.23	965	196	8.0 ± 0.1
SIS70	Solvent-rich	1.44	356	240	3.0 ± 0.1
51570	Salt-rich	2.5	870	209	8.1 ± 0.1
CICOO	Solvent-rich	3.01	1014	223	8.4 ± 0.1
51580	Salt-rich	/	/	/	/
~~~~	Solvent-rich	1.71	921	229	$8.4\pm0.1$
S1S90	Salt-rich	/	/	/	/
NaDEEP	-	7.49	1279	213	$10.6\pm0.1$
TEOP	-	5.11	379	222	$3.2\pm0.05$

**Table S5.** VFT equation parameters and apparent activation energies of diffusivity (¹H) for the SIS*XX* electrolytes, the NaDEEP salt, and the TEOP solvent.

*For SIS80 and SIS90, the "salt-rich" VFT parameters could not be determined from the ¹H NMR spectra.