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Literature Review 

Numerous studies have detailed the acid-catalysed hydrolysis of carbohydrates in other alcohols in a one-pot 

system. These reports were recently addressed in a comprehensive review by Galletti and co -workers [1].   

 

The reaction of ethanol,  in the presence of a Brønsted and/or Lewis acid catalyst, with; glucose [2-23], fructose [2, 

5-7, 10-12, 16, 18, 20, 21, 23-32],  sucrose [2, 4, 5,  9, 12, 16, 18, 21, 27, 29, 33], mannose [16],  maltose [16],  inulin 

[2, 5, 9, 10, 16, 18, 20, 27],  cellulose [7, 9, 34-41], starch [10] and a range of biomasses [8, 42-54] has been shown 

to form ethyl levulinate. These reports use a diverse range of catalysts including mineral (Brønsted) acids [2-5, 38, 

40], metal salts (Lewis acids) [6, 37, 41, 55], ion exchange resins [10, 38, 55], sulfonated nanomaterials [4, 7, 10, 18, 

30, 33, 55], polyoxometalates [9, 11, 18, 20, 23, 27, 36, 39], zeolites [3, 8, 14, 16, 17, 20, 56], ionic liquids [29, 34] 

and other miscellaneous nanomaterials [10, 12-15, 17, 19, 22, 24, 25, 28]. Generally, reaction temperature ranges 

from 120 – 200 °C, while reaction times from 0.5 – 24 hours. The ethyl levulinate yields (mol%) achieved by these 

catalysts on the ethanolysis of glucose are presented in the results and discussion section of this paper.  

 

The majority of these investigations have focused on investigating the effect of the catalyst on the resulting yield 

of ethyl levulinate. Both homogeneous and heterogeneous Brønsted and Lewis acids (and combinations thereof) 

have been investigated intensively. The archetypal catalyst for this reaction is sulphuric acid (H2SO4). Sulphuric acid  

has several benefits,  including low price and abundance on an industrial scale. Silva et al.  have performed a rigorous 

techno-economic-analysis on the production of ethyl levulinate from lignocellulosic biomass [57]. They analysed 

148 individual production process scenarios and identified fifty-three as the most commercially viable processes, 

all using sulphuric acid as a catalyst. This shows that complex catalysts appear unlikely to allow economic viabilit y 

despite notable efforts in identifying new catalytic systems for these reactions.  

 

To date, the highest yield of ethyl levulinate from glucose, 81 %,  results from combining acid SnO 2 (Lewis acid) and 

zeolite H-USY (Brønsted acid) [22]. Similarly, the highest reported yield of ethyl levulinate from cellulose is 75 %, 

using a combination of the Lewis acid Y(OTf)3 and the Brønsted acid, H3PO4 [35]. Lewis acids are proposed to catalyse 

the isomerisation of glucose to fructose and consequently produce higher yields of ethyl levulinate [22]. This can 

be used to rationalise the observation that the maximum yields of ethyl levulinate from glucose and cellulose via 

Lewis acid-catalysed isomerisation are approximately equivalent to those obtained from fructose. Thus, the 

synergistic combination of Lewis and Brønsted acids appears to be a viable strategy to improve the yield of ethyl 

levulinate from glucose and cellulose. Notably, however, despite a host of studies into more exotic singular Lewis 

or Brønsted catalytic systems, they generally offer  minimal improvements in ethyl levulinate yields compared to 

sulphuric acid. This is because the rate of reaction depends on the concentration of the hydrogen cation, regardless 

of its source.  

 

Many studies suggest the use of heterogeneous catalysts. This  is most often rationalised in the context of process 

improvement, recognising that heterogeneous catalysts are more easily removed from the reaction media and 

recycled. However, while this may be true for ideal model systems (i.e., glucose, fructose, and cellulose), the 

ethanolysis of biomass results in the formation of insoluble polymeric materials known as humins which prevent 

the easy recovery of these catalytic materials [1].  For these reasons, sulphuric acid is the catalyst most widely 

employed in the literature for the ethanolysis of biomass and is also the catalyst chosen in this work.  

 

When considering the alcoholysis processes that use sulphuric acid as the catalyst, there is a clear absence of a 

detailed and reliable dataset that establishes the steady state conditions of ethyl levulinate production from pure 

carbohydrates and real-world biomass. This work addresses this knowledge gap by establishing the steady-state 

conditions for ethyl levulinate production from glucose, cellulose, and corn cob (5, 10, and 20 mass%) at 150 °C. 

This data has been cast as a detailed kinetic model that accurately describes the experimental yields of crucial 

chemical species. Moreover, with optimal reaction conditions established, future work entails a temperature-

dependent study on the steady states of ethyl levulinate production from pure carbohydrates and real -world 

biomass.  
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Multiple Linear Regression 

A detailed literature review was performed on the alcoholysis of glucose to produce ethyl levulinate in ethanol solvent, for 
various catalysts in a one-pot process. From the data gathered (30 reported yields of ethyl levulinate from glucose), multiple 
linear regression (MLR) was performed to identify which reaction conditions were statistically significant with regard the 
production of ethyl levulinate. The independent reaction variables used in the regression were: 

1. Feedstock concentration 
2. Ethanol concentration 
3. Catalyst concentration 
4. Catalyst type 
5. Reaction temperature 
6. Reaction time 

From this analysis, no reaction conditions were determined to be statistically significant. The two most common categories 
of catalyst used were: 

1. Inorganic mineral acid and metal salts. 
2. Zeolite based catalysts. 

A MLR model was separately created for each catalyst type. Within each catalyst type, models were produced for every 
combination of the independent variables (reaction conditions). The p-value of each coefficient for the reaction conditions 
were calculated for each model produced. The p-values are indicators that represent how statistically significant an 
independent variable is and are found using the probability of the observed data occurring by chance. It was found that for 
both zeolite based and Inorganic mineral acid and metal salt catalysts, both feedstock loading and reaction temperature 
were statistically significant variables on the yield of ethyl levulinate from glucose. However, there was not enough data to 
draw any meaningful conclusions. The models produced from MLR are shown in figures 1 and 2.  

A literature review on previous ethanolysis kinetic models was carried out and is presented in table 1.  

 

 

 

 

 

 

 

 

 



 

-0.47*Feedstock (mass%) + 0.21*Temperature(°C) = Yield of Ethyl Levulinate (mol%)  

Figure 1. Predicted ethyl levulinate yields (mol%) versus the actual yields (mol%) reported from the literature based on two 
reaction conditions: feedstock loading (mass%) and reaction temperature (°C). This model only considers glucose as a 
feedstock and Inorganic mineral acid and metal salts as catalysts. The model’s equation is presented above the plot shown.  

 

 

-3.80*Feedstock (mass%) + 0.29*Temperature(°C) = Yield of Ethyl Levulinate (mol%) 

Figure 2. Predicted ethyl levulinate yields (mol%) versus the actual yields reported from the literature based on two reaction 
conditions: feedstock loading (mass%) and reaction temperature (°C). This model only considers glucose as a feedstock and 
zeolite based materials as catalysts.  The model’s equation is presented above the plot shown.  

 

 

 



 

Table 1. Literature review of the kinetic modelling of the ethanolysis of carbohydrates using a sulphuric acid catalyst for a 
closed homogeneous isothermal reaction system.   

 

 

 

 

Literature Review of Ethanolysis Kinetic Models 

Feedstock 
Reaction 
Time 
(mins) 

Reaction 
Temperature 
(°C) 

Reaction mechanism Fidelity Ref. 

 Fructose 480 78 

𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒
𝐻+ 
→ 𝐻𝑀𝐹 + 3𝐻2𝑂 

R2= 0.75 
Flannelly et al. 
[58] 

𝐻𝑀𝐹 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙
𝐻+ 
→ 𝐸𝑀𝐹 +𝐻2𝑂 

𝐸𝑀𝐹 + 2𝐻2𝑂
𝐻+ 
→ 𝐻𝑀𝐹 + 𝐹𝑜𝑟𝑚𝑖𝑐 𝑎𝑐𝑖𝑑 

𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 
𝐻+ 
→ 𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 + 𝐻2𝑂 

𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 +𝐻2𝑂
𝐻+ 
→ 𝑓𝑟𝑢𝑐𝑡𝑜𝑠𝑒 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙  

Fructose 250 180 

𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒
𝐻+ 
→ 𝐻𝑀𝐹 + 3𝐻2𝑂 

R2= 0.93  Howard at al. [59] 

𝐻𝑀𝐹 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙
𝐻+ 
→ 𝐸𝑀𝐹 +𝐻2𝑂 

𝐸𝑀𝐹 + 2𝐻2𝑂
𝐻+ 
→ 𝐻𝑀𝐹 + 𝐹𝑜𝑟𝑚𝑖𝑐 𝑎𝑐𝑖𝑑 

𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 
𝐻+ 
→ 𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 + 𝐻2𝑂 

𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 +𝐻2𝑂
𝐻+ 
→ 𝑓𝑟𝑢𝑐𝑡𝑜𝑠𝑒 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙  

𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 
𝐻+ 
→ 𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑠  

Glucose 1600 180 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 
𝐻+ 
→ 𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 +𝐻2𝑂 

R2= 0.90 Howard at al. [59] 

𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 +𝐻2𝑂 
𝐻+ 
→ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙  

𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 
𝐻+ 
→ 𝐸𝑡ℎ𝑦𝑙 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑎𝑡𝑒 + 𝐹𝑜𝑟𝑚𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝐻2𝑂 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 
𝐻+ 
→ 𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑠 𝐴 

𝐸𝑡ℎ𝑦𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒𝑠 
𝐻+ 
→ 𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑠 𝐵 

Glucose 210 160 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 
𝐻+ 
→ 𝐸𝑡ℎ𝑦𝑙 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑎𝑡𝑒 + 𝐸𝑡ℎ𝑦𝑙 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 

R2= 0.986 Zhu et al. [60] 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝐻+ 
→ 𝐻𝑢𝑚𝑖𝑛 + 𝑢𝑛𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Glucose 210 180 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 
𝐻+ 
→ 𝐸𝑡ℎ𝑦𝑙 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑎𝑡𝑒 + 𝐸𝑡ℎ𝑦𝑙 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 

R2= 0.986 Zhu et al. [60] 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝐻+ 
→ 𝐻𝑢𝑚𝑖𝑛 + 𝑢𝑛𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Glucose 210 200 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 
𝐻+ 
→ 𝐸𝑡ℎ𝑦𝑙 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑎𝑡𝑒 + 𝐸𝑡ℎ𝑦𝑙 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 R2= 0.986 Zhu et al. [60] 



Ultimate and Proximate Analysis of Humins 

Table 2. Ultimate and Proximate Analysis of humin samples 

Reaction Conditions Elemental Analysis (mass %) db Proximate Analysis (mass %) db 

HHV (MJ/kg)  Feedstock 
Feedstock 
Loading 
(mass%) 

Reaction 
Time 

(mins) 

Feedstock 
/Acid 
ratio 

Carbon Hydrogen Nitrogen Sulphur Oxygen 
VM FC Ash 

Ave SD Ave SD Ave SD Ave SD Ave SD 

Corn cob 20 8000 10 54.99 1.87 3.61 0.41 1.06 0.03 4.03 0.15 26.14 1.33 55.79 34.02 10.18 19.09 

Corn cob 20 8000 40 66.67 0.16 5.23 0.03 0.10 0.01 0.80 0.04 21.15 0.08 58.33 35.62 6.05 26.23 

Corn cob 20 10000 10 55.51 3.54 4.09 0.24 1.09 0.02 4.71 0.05 25.54 3.76 54.02 36.92 9.06 20.05 

Corn cob 20 4000 10 55.48 0.46 3.80 0.10 1.00 0.01 2.58 0.07 28.81 0.45 52.76 38.92 8.32 19.06 

Cellulose 20 10000 40 68.45 0.89 4.89 0.08 0.13 0.01 0.48 0.03 19.96 1.00 58.57 35.35 6.08 26.57 

Corn cob 20 6000 10 60.32 1.60 4.41 0.38 1.14 0.09 3.32 0.72 21.16 2.79 54.92 35.44 9.65 22.92 

Corn cob 20 9000 10 62.47 1.19 4.64 0.10 1.15 0.02 2.41 0.11 19.69 1.42 55.58 34.78 9.64 24.23 

Corn cob 20 7000 10 56.20 3.33 4.10 0.35 1.07 0.07 2.28 0.10 27.18 3.85 54.09 36.75 9.17 20.01 

Corn cob 10 10000 20 60.64 1.14 4.44 0.10 1.21 0.01 0.85 0.09 23.24 1.13 53.24 37.13 9.63 22.70 

Corn cob 20 5000 10 54.58 1.38 3.50 0.47 1.00 0.00 1.72 0.06 29.41 1.91 52.86 37.34 9.80 18.21 

Corn cob 20 10000 40 56.50 1.20 6.02 0.25 1.03 0.02 0.49 0.32 25.63 1.29 65.86 23.80 10.34 23.11 

Cellulose 20 6000 40 69.25 3.20 4.89 0.23 0.12 0.00 1.08 0.03 18.41 3.46 55.33 38.41 6.25 27.10 

Corn cob 20 9000 40 50.91 2.01 5.27 0.11 0.96 0.01 1.28 0.20 32.03 2.33 67.72 22.73 9.55 19.02 

Corn cob 20 4000 40 49.20 4.53 5.28 0.55 0.87 0.07 1.11 0.36 33.29 5.51 70.25 19.51 10.24 18.24 

Corn cob 20 7000 40 48.03 0.82 5.08 0.08 0.85 0.03 1.13 0.02 34.65 0.95 68.77 20.98 10.25 17.31 

Cellulose 20 7000 40 63.84 0.56 4.33 0.07 0.09 0.00 0.92 0.01 25.32 0.63 57.00 37.50 5.50 23.25 

Cellulose 20 9000 40 64.21 5.64 4.03 1.07 0.11 0.01 0.82 0.16 30.51 6.88 61.70 37.98 0.32 22.04 

Corn cob 20 5000 40 47.85 0.59 5.03 0.03 0.88 0.01 0.76 0.10 40.58 0.53 72.60 22.49 4.90 16.12 

Cellulose 20 5000 40 64.65 0.38 4.79 0.00 0.06 0.00 0.88 0.03 28.91 0.34 65.60 33.68 0.72 23.54 

Corn cob 20 6000 40 49.92 0.89 4.96 0.12 0.93 0.01 0.69 0.03 38.64 1.06 71.54 23.59 4.87 17.07 

Corn cob 20 8000 40 51.55 2.45 5.23 0.29 0.95 0.06 0.96 0.39 36.23 3.19 72.13 22.77 5.09 18.43 

Cellulose 20 4000 40 67.44 5.00 4.54 0.63 0.08 0.00 0.76 0.06 26.49 5.58 63.30 36.01 0.69 24.57 

 

 



db = dry basis, Ave = average, SD = standard deviation, VM = volatile matter, FC = fixed carbon, and HHV = high heating value. 

𝐻𝐻𝑉 (
𝑀𝐽

𝑘𝑔
) = (0.3383 × 𝐶(𝑑𝑏)) + (1.422 × (𝐻(𝑑𝑏) − (

𝑂(𝑑𝑏)

8
))  

 

Destination of Sulphuric from Acid Catalyst 

After alcoholysis, most of the sulphur content is present in the humins (≥93.9 %). This is evidenced by the data below in table 
2. Considering the longest reaction time (10000 mintes), and lowest feedstock/acid ratio (10), shown in table 1, the humins 
produced have a sulphur content of 4.71 mass %. The mass of humins produced from this reaction is 0.65 g, giving 0.031g of 
sulphuric present in the humins. For this reaction, 2 mass % of sulphuric acid was used in a total reaction system of 5 g, which 
is the equivalent of 0.1 g of sulphuric acid initially. This gives a sulphur content of 0.033 g. 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑆𝑢𝑙𝑝ℎ𝑢𝑟𝑖𝑐 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 =
𝑆𝑢𝑙𝑝ℎ𝑢𝑟 𝑖𝑛 𝐻𝑢𝑚𝑖𝑛𝑠 𝑎𝑡 10000 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 (𝑔)

𝑆𝑢𝑙𝑝ℎ𝑢𝑟 𝑖𝑛 𝐴𝑐𝑖𝑑 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 (𝑔)
× 100% = 

0.31

0.33
× 100% = 93.9 % 

Considering the inherent mass loss attributed to humins measurements via centrifugation, this is a sufficiently high 
percentage to conclude that most, if not all the sulphur from the acid catalyst is present in the produced humins after 
ethanolysis reactions. 
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