All-iron redox flow battery in flow-through and flow-over set-ups: the critical role of cell configuration

Josh J. Bailey,^a Maedeh Pahlevaninezhad,^b H. Q. Nimal Gunaratne,^a Hugh O'Connor,^a Kate Thompson,^a Pranav Sharda,^a Paul Kavanagh,^a Oana M. Istrate,^c Stephen Glover,^c Peter A. A. Klusener,^d Edward P. L. Roberts,^{*b} Peter Nockemann.^{*a}

Supplementary Information

Solubility

Ultraviolet-visible (UV-Vis) spectroscopy and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were used to characterise the solubility of pure Na₄Fe(CN)₆ and K₄Fe(CN)₆ for comparison with literature values. A saturated solution of Na₄Fe(CN)₆ (prepared from a mixture of 0.1 mol of the salt in 100 mL of deionized water) demonstrated concentrations of 0.50 M by UV-Vis and 0.54 M by ICP-OES, which compare well with literature reports of 0.56 M.⁶⁸ When repeated for K₄Fe(CN)₆, values of 0.72 M and 0.67 M were observed by UV-Vis and ICP-OES, respectively, slightly below the value of 0.76 M reported previously.⁶⁸

Density and viscosity

Figure S1: Densities of posolyte (0.25 M Na₄[Fe(CN)₆], 0.25 M K₄[Fe(CN)₆], 1.00 M NaCl) and negolyte (0.50 M FeCl₃, 1.00 M BIS-TRIS, 2.50 M NaOH) as a function of temperature.

Figure S2: Viscosities of posolyte $(0.25 \text{ M Na}_4[Fe(CN)_6], 0.25 \text{ M K}_4[Fe(CN)_6],$ 1.00 M NaCl) and negolyte $(0.50 \text{ M FeCl}_3, 1.00 \text{ M BIS-TRIS}, 2.50 \text{ M NaOH as a function}$ of temperature.

Table S1: Negolyte (0.50 M FeCl ₃ , 1.	.00 M BIS-TRIS, 2.50 M	I NaOH) density and viscosity
---	------------------------	-------------------------------

Temp.	Density	Dyn. Viscosity	Kin. Viscosity
(°C)	(g cm⁻³)	(mPa∙s)	(mm² s-1)
20	1.17334	4.021	3.427
25	1.17090	3.433	2.932
30	1.16834	2.960	2.534
35	1.16570	2.583	2.216
40	1.16299	2.272	1.953
45	1.16020	2.018	1.740
50	1.15734	1.806	1.561

Table S2: Posolyte 0.25 M Na₄[Fe(CN)₆], 0.25 M K₄[Fe(CN)₆], 1.00 M NaCl) density and viscosity as a function of temperature.

Temp. (°C)	Density (g cm ⁻³)	Dyn. Viscosity (mPa∙s)	Kin. Viscosity (mm² s ⁻¹)
20	1.13360	1.577	1.391
25	1.13153	1.413	1.249
30	1.12933	1.272	1.126
35	1.12702	1.154	1.024
40	1.12462	1.053	0.936
45	1.12212	0.967	0.862
50	1.11951	0.893	0.798

Cross-over

Figure S3: H-Cell set-up used to measure cross-over of negolyte.

Table S3: Iron concentrations by ICP-OES, as a function of time, of 110-times-diluted

Timo	Measured Fe	Calculated Fe
(h)	concentration in diluted	concentration in
	ICP-OES sample (ppm)	electrolyte (M)
1	0.64	1.26E-4
2	0.43	8.47E-5
3	0.40	7.88E-5
4	0.36	7.09E-5
68	0.46	9.06E-5
69	0.41	8.08E-5
70	0.41	8.08E-5
71	0.41	8.08E-5

Table S4: Differences between studies carried out by Shin et al. (2022) and the studies carried out in this work.

	Shin <i>et al.</i> 2022	Bailey et al. 2024	Comment
Starting material	$Fe_2(SO_4)_3$	FeCl₃	May affect complex formed.
OCV	1.43 V	1.28 V	Consistent with a different complex.
Concentration	0.5 M	0.5 M	Unchanged.
M:L:B	1:2:8.6	1:2:5	Assuming x=7.4 for hydrate.
			This could also affect the complex formed.
Ppt removed	Yes	No	None formed via chloride.
[Fe(CN)] ³⁻ in posolyte	Yes	No	0.3 M ferricyanide highly likely to be contributing to
			stability.
Configuration	Flow-through	Flow-through	Unchanged.
Tank volumes	16 mL	25 mL	Longer cycles will adversely affect our stability.
Flow rate	23 mL min ⁻¹	50 mL min ⁻¹	Significantly higher in our case.
Active area	4 cm ²	5 cm ²	Similar.
Electrode Thickness	4.6 mm	6.5 mm	Multiple electrode pieces used in our cell due to design.
Compression ratio	N/A	<i>ca.</i> 53%	Not known how compressed their felt was.
Current density	80 mA cm ⁻²	60 mA cm ⁻²	Highest current density at which both configurations in
			this work could be cycled was 60 mA cm ⁻² .

M = metal; L = ligand; B = base