Analysis of the Impact of Remote Oxygen Plasma Treatment on the Surface Chemistry and Electrochemical Properties of Graphite Felt Electrodes for Redox Flow Batteries

L. Mauricio Murillo-Herrera^{[a]*}, Carlos J. Mingoes^[a], J. Obrero-Pérez^[b], Juan R. Sánchez-Valencia^[b], Michael W. Thielke^[a], Ángel Barranco^[b], Ana B. Jorge Sobrido^{[a]*}.

^[a]School of Engineering and Materials Science. Queen Mary University of London. Mile End Rd, London E1 4NS, United Kingdom

^[b]Instituto de Ciencia de Materiales de Sevilla. Consejo Superior de Investigaciones Científicas. c/Américo Vespucio 49, 41092, Sevilla, Spain.

Table of contents

Table S1: Deconvolution of High resolution XPS data
Figure S2: GF400 high resolution C1s & O1s spectra
Figure S3: Anomalous GF400 high resolution C1s & O1s spectra5
Figure S4: P10s high resolution C1s & O1s spectra5
Figure S5: P60s high resolution C1s & O1s spectra6
Figure S6: P600s high resolution C1s & O1s spectra6
Figure S7: Pristine GF Raman spectrum and D/G band deconvolution
Figure S8: GF400 Raman spectrum and D/G band deconvolution
Figure S9: P10s Raman spectrum and D/G band deconvolution
Figure S10: P60s Raman spectrum and D/G band deconvolution
Figure S11: P600s Raman spectrum and D/G band deconvolution9
Figure S12: Pristine GF cyclic voltammetry showcasing non-faradaic current at different
scan rates and linear fit of a current vs scan rate plot10
Figure S13: GF400 cyclic voltammetry showcasing non-faradaic current at different scan
rates and linear fit of a current vs scan rate plot10
Figure S14: P10s cyclic voltammetry showcasing non-faradaic current at different scan
rates and linear fit of a current vs scan rate plot
Figure S15: P60s cyclic voltammetry showcasing non-faradaic current at different scan
rates and linear fit of a current vs scan rate plot
Figure 16: P60s cyclic voltammetry showcasing non-faradaic current at different scan rates
and linear fit of a current vs scan rate plot
Figure S21: Pore-size distributions from electrodes as derived from BET analysis
Figure S22: Schematic of a Single-electrolyte flow cell
Figure S23: Breakdown of Impedance contributions: Onmic resistance (Rs), charge-transfer
resistance (Rct) and mass-transport resistance (Rmt) at 110 mL min ⁻¹
Figure 524: Breakdown of Impedance contributions: Onmic resistance (Rs), charge-transfer
Tesistance (RCt) and mass-transport resistance (RMt) at 50 mL min ⁻¹
Figure 525 : Breakdown of Impedance contributions: Onmic resistance (RS), charge-transfer
resistance (RCL) and mass-transport resistance (RML) at 30 mL min ⁻¹

Figure S26: Breakdown of impedance contributions: Ohmic resistance (Rs), charge-transfer

Figure S18: Schematic of a Flow cell set up to perform pressure drop measurements. Error! Bookmark not defined.

Figure S19: Darcy-Forchheir	ner fitting	
Figure S20: Permeability val	ues derived from Darcy-Forchheimer fitting	j 18

	3 Average STD	72.42 1.78	5.11 0.43	6.50 3.33	4.49 0.93	1.79 0.86	4.60 0.79	5.11 2.39	1.59	8 Average STD	39.81 4.10	56.06 5.84	4.12 2.23	0.93	 8 Average STD	89.12 0.78	
P600s	Sample:	70.39	5.11	10.35	4.80	1.09	5.32	2.94	1.41	Sample:	36.98	58.43	4, 59	0.94	Sample	88.78	
	. Sample2	73.18	4.68	4.51	3.45	2.75	3.76	7.67	1.76	Sample	44.51	49.41	6.08	0.81	Sample 2	90.02	
	Sample 1	73.70	5.53	4.65	5.23	1.54	4.71	4.71	1.59	Sample 1	37.95	60.35	1.70	1.03	Sample 1	88.57	
	STD	3.47	1.82	1.07	0.77	0.84	0.27	0.62		STD	4.46	6.01	1.81		STD	0.33	
	Average	73.78	6.68	3.59	5.18	1.82	3.43	5.16	1.28	Average	36.17	59.78	3.72	0.93	Average	89.58	
P60s	Sample3	69.93	8.74	4.77	4.72	2.46	3.44	4.87	1.07	Sample3	38.58	54.61	5.81	1.01	Sample 3	89.38	
	Sample2	76.66	5.28	2.68	6.07	0.87	3.69	4.74	1.38	Sample2	31.02	66.38	2.61	0.92	Sample2	89.40	
	Sample 1	74.74	6.02	3.33	4.75	2.12	3.16	5.87	1.38	Sample1	38.91	58.36	2.74	0.88	Sample1	89.96	
	STD	0.52	2.04	1.73	0.72	1.22	0.28	0.99		STD	5.51	4.75	0.75		STD	0.24	
	Average	69.79	4.69	6.17	4.38	4.75	4.47	5.51	1.17	Average	48.71	46.64	4.65	0.91	Average	86.42	
P10s	Sample 3	70.19	3.09	6.03	5.18	3.52	4.60	6.65	1.16	Sample3	42.98	51.58	5.43	0.83	Sample 3	86.67	
	Sample2	69.97	6.99	4.52	4.20	4.77	4.66	4.89	1.25	Sample 2	49.18	46.23	4.59	0.99	Sample 2	86.39	
	Sample1	69.20	3.98	7.97	3.77	5.95	4.14	4.99	1.11	Sample1	53.97	42.10	3.93	0.92	Sample 1	86.20	
GF400 anomalous	Sample 1	63.74	13.41	10.95	5.53	5.57	0.80	0.00	3.33	Sample1	53.73	45.80	0.48	2.47	Sample 1	88.33	
	STD	1.46	0.60	3.40	0.05	0.47	0.27	1.15		đ	12.03	13.94	2.14		STD	0.54	
	Average	75.83	6.74	4.13	1.31	1.90	0.93	9.14		Average	48.24	46.61	5.13	0.97	Average	95,86	
3F400	Sample3	76.62	6.93	3.93	1.26	1.37	0.96	8.93	1.26	Sample3	48.02	45.62	6.32	0.91	Sample3	96.48	
-	Sample2	74.15	6.06	7.63	1.32	2.06	0.65	8.12	1.01	Sample 2	36.32	61.02	2.66	0.94	Sample 2	95.92	
	Sample 1	76.73	7.22	0.84	1.36	2.27	1.19	10.38	1.60	Sample 1	60.37	33.20	6.42	1.07	Sample1	95.17	
	STD	1.58	0.61	1.41	0.49	0.23	0.12	0.67		STD	3.90	3.15	1.57		STD	0.45	
	Average	78.80	7.72	2.07	0.93	0.76	0.45	9.27	1.26	Average	52.29	42.01	5.50	1.02	Average	97.85	
pristine	Sample3	77.82	7.51	3.65	1.49	0.55	0.48	8.51	1.20	Sample3	48.02	45.62	6.35	0.96	Sample3	97.47	
5	Sample 2	77.96	8.41	1.59	0.70	1.01	0.56	9.78	1.07	Sample 2	55.67	40.64	3.69	0.95	Sample2	97.73	
	Sample1	80.63	7.24	0.96	0.60	0.72	0.32	9.52	1.51	Sample 1	53.19	39.78	6.46	1.16	Sample 1	98.34	
Chemical shift	C15	0 5	C-C Low BE C-H	Chigh BE Adv. C	0.0 0	C=O	0-C=O	Pi-Pi*	Residual STD	015	C=O	C-O aliphatic	Ads 02, H20	Residual STD	Regions	C1s	

XPS analysis.

Table S1: Deconvolution of High resolution XPS data

Figure S1: Pristine GF high resolution C1s & O1s spectra.

Figure S2: GF400 high resolution C1s & O1s spectra.

Figure S3: Anomalous GF400 high resolution C1s & O1s spectra.

Figure S4: P10s high resolution C1s & O1s spectra.

Figure S6: P600s high resolution C1s & O1s spectra.

Raman analysis.

Table S2: Raman analysis including Gaussian and Lorentzian contributions for each band

Pristine	ld/lg	2.679907518	GF400	gl/bl	3.713565667	P10s	ld/lg	3.239609023	P60s	ld/lg	3.283421792	P600s	ld/lg	3.503555243
D1 band	Value	Range	D1 band	Value	Range	D1 band	Value	Range	D1 band	Value	Range	D1 band		Range
Center	1332.14763	1320to1360	Center	1333.94587	1320to1360	Center	1333.57716	1320to1360	Center	1332.5819	1320to1360	Center	1333.638	1320to1360
Area	289903.8301		Area	432141.682		Area	254386.9861		Area	482337.7709		Area	224918.4845	
MG	36.80391	5-60	wG	39.0275	5-60	мG	40.53759	5-60	мG	36.17939	5-60	wG	41.08113	5-60
wL	40	5-40	wL	40	5-40	wL	40	5-40	w٢	40	5-40	wL	40	5-40
FWHM	62.62825		FWHM	64.62409		FWHM	65.99181		FWHM	62.07194		FWHM	66.48632	
Area %	65.51077466		Area %	70.70440982		Area %	62.83770222		Area %	69.37630864		Area %	64.20012701	
G band			G band			G band			G band			G band		
Center	1599.62903	1580to1610	Center	1599.08449	1580to1610	Center	1599.32798	1580to1610	Center	1598.34704	1580to1610	Center	1599.92889	1580to1610
Area	108176.8039		Area	116368.3965		Area	78523.97752		Area	146900.9471		Area	64197.21366	
Gw	59.63946	5-60	Gw	60	5-60	Gw	59.91332	5-60	Gw	60	5-60	Gw	60	5-60
Lw	8.90526	5-60	Lw	6.26352	5-60	Lw	ß	5-60	Lw	6.28942	5-60	Lw	ۍ ۱	5-60
FWHM	64.54405		FWHM	63.41925		FWHM	62.6315		FWHM	63.43368		FWHM	62.71811	
Area %	24.44516246		Area %	19.03949362		Area %	19.39669317		Area %	21.12927093		Area %	18.32427993	
D4 band			D4 band			D4 band			D4 band			D4 band		
Center	1210	1190to1210	Center	1210	1190to1210	Center	1210	1190to1210	Center	1210	1190to1210	Center	1210	1190to1210
Area	28893.98248		Area	32756.92096		Area	18721.27312		Area	32050.27745		Area	30638.71136	
Gw	57.69697	50-100	Gw	161.39144	50-100	Gw	139.3241	50-200	Gw	129.30389	50-200	Gw	88.94766	50-200
Lw	200	50-200	Lw	5	50-200	Lw	5	50-200	Lw	62.15468	50-200	Lw	141.98034	50-200
FWHM	216.43228		FWHM	164.08122		FWHM	142.01653		FWHM	165.72796		FWHM	186.70882	
Area %	6.529293436		Area %	5.3594894		Area %	4.624457421		Area %	4.609902177		Area %	8.745431329	
D3 band			D3 band			D3 band			D3 band			D3 band		
Center	1510	1510to1530	Center	1513.50276	1510to1530	Center	1510	1510to1530	Center	1510	1510to1530	Center	1510	1510to1530
Area	42824.71936		Area	61065.86035		Area	70299.72608		Area	64389.82262		Area	59604.4445	
Gw	100	5-100	Gw	100	5-100	Gw	150	5-150	Gw	100	5-150	Gw	150	5-150
Lw	100	5-100	Lw	100	5-100	Lw	125.89049	5-150	Lw	100	5-150	۲w	96.37261	5-150
FWHM	163.75959		FWHM	163.75959		FWHM	228.3376		FWHM	163.75959		FWHM	208.08296	
Area %	9.677280009		Area %	9.991226943		Area %	17.36516998		Area %	9.261410731		Area %	17.01333226	
D2 band			D2 band			D2 band			D2 band			D2 band		
Center	1623.11865	1610to1630	Center	1618.86937	1610to1630	Center	1621.08663	1610to1630	Center	1619.99649	1610to1630	Center	1619.48278	1610to1630
Area	10482.65493		Area	38559.83526		Area	11917.99331		Area	36655.05744		Area	13323.08427	
Gw	29.99223	5-50	Gw	39.04722	5-50	Gw	34.25234	5-50	Gw	37.40419	5-50	Gw	38.70923	5-50
Lw	5	5-50	Lw	2	5-50	Γw	ъ	5-50	ΓM	2	5-50	Lw	ъ С	5-50
FWHM	32.75537		FWHM	41.7895		FWHM	37.0043		FWHM	40.14951		FWHM	41.45211	
Area %	2.368809148		Area %	6.308927161		Area %	2.943937212		Area %	5.272223598		Area %	3.802905325	

Figure S7: Pristine GF Raman spectrum and D/G band deconvolution.

Figure S8: GF400 Raman spectrum and D/G band deconvolution.

Figure S9: P10s Raman spectrum and D/G band deconvolution.

Figure S10: P60s Raman spectrum and D/G band deconvolution.

Figure S11: P600s Raman spectrum and D/G band deconvolution.

Electrochemical double layer capacitance analysis

Figure S12: Pristine GF cyclic voltammetry showcasing non-faradaic current at different scan rates and linear fit of a current vs scan rate plot.

Figure S13: GF400 cyclic voltammetry showcasing non-faradaic current at different scan rates and linear fit of a current vs scan rate plot.

Figure S14: P10s cyclic voltammetry showcasing non-faradaic current at different scan rates and linear fit of a current vs scan rate plot.

Figure S15: P60s cyclic voltammetry showcasing non-faradaic current at different scan rates and linear fit of a current vs scan rate plot.

Figure 16: P60s cyclic voltammetry showcasing non-faradaic current at different scan rates and linear fit of a current vs scan rate plot.

BET analysis.

Figure S17: Pore-size distributions from electrodes as derived from BET analysis.

Single-electrolyte cell analysis.

Figure S18: Schematic of a Single-electrolyte flow cell.

Figure S19: Breakdown of impedance contributions: Ohmic resistance (Rs), charge-transfer resistance (Rct) and mass-transport resistance (Rmt) at 110 mL min⁻¹

Figure S20: Breakdown of impedance contributions: Ohmic resistance (Rs), charge-transfer resistance (Rct) and mass-transport resistance (Rmt) at 50 mL min⁻¹

Figure S21: Breakdown of impedance contributions: Ohmic resistance (Rs), charge-transfer resistance (Rct) and mass-transport resistance (Rmt) at 30 mL min⁻¹

Figure S22: Breakdown of impedance contributions: Ohmic resistance (Rs), charge-transfer resistance (Rct) and mass-transport resistance (Rmt) at 10 mL min⁻¹

Pressure drop analysis.

Figure S24: Pressure drop plot from different electrodes showcasing curve hysteresis.

Figure S25: Darcy-Forchheimer fitting.

Figure S26: Permeability values derived from Darcy-Forchheimer fitting