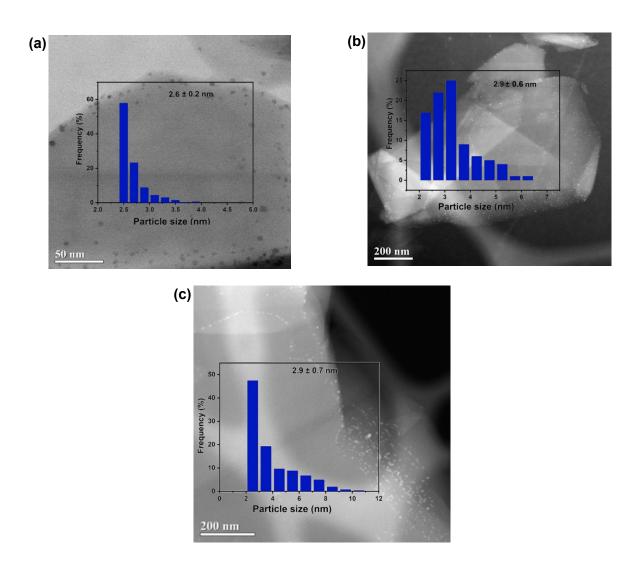
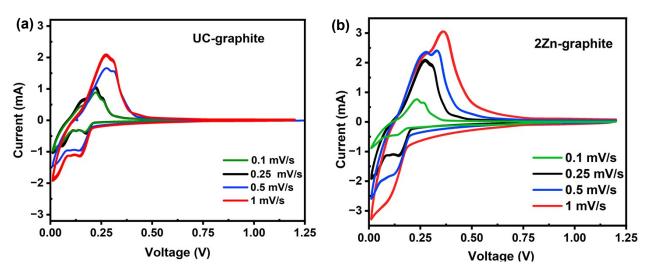

Supporting Information


Graphite Particles Modified by ZnO Atomic Layer Deposition for Li-ion Battery Anodes

Ahmad Helaley ^a, Han Yu ^b, and Xinhua Liang ^{a,*}


- ^a Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- ^b Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
- * Corresponding author. Email: <u>xinhua.liang@wustl.edu</u>

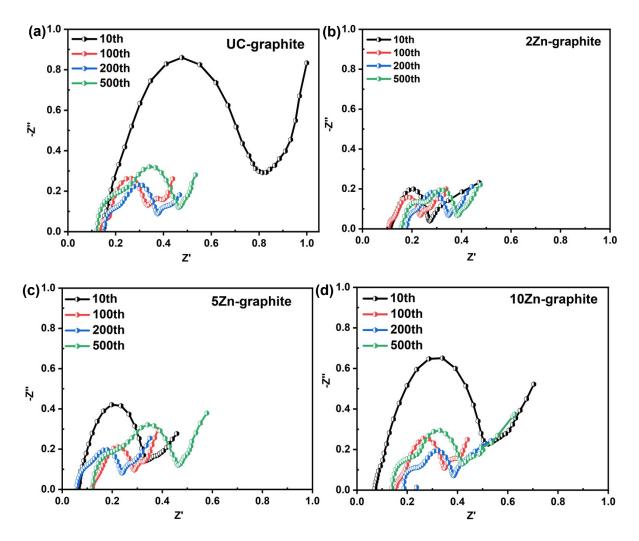
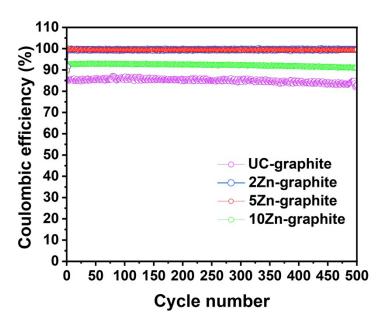
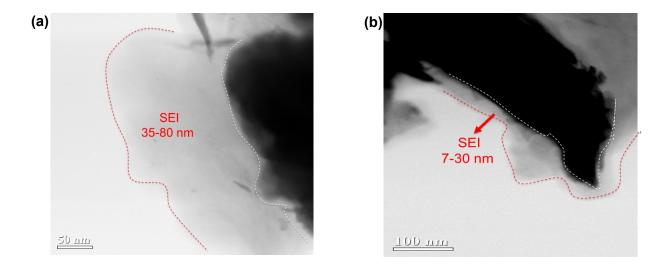
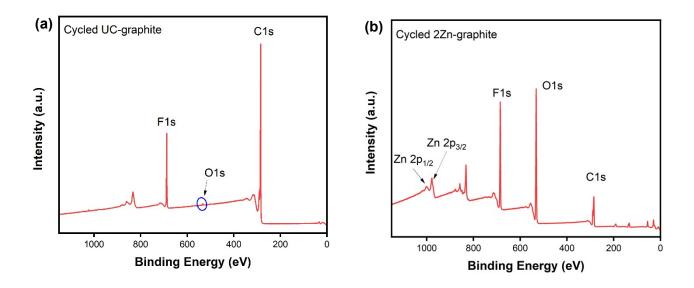
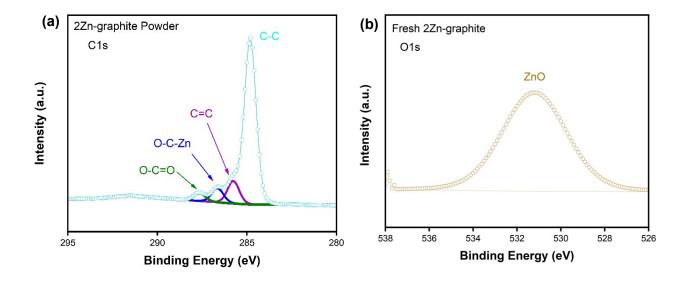

Fig. S1. FTIR spectra of pristine graphite particles and graphite particles coated with various number of ZnO ALD cycles.

Fig. S2. TEM images of (a) 2Zn-graphite powders, (b) 5Zn-graphite powders, and (c) 10Zn-graphite powders. The inset image shows the size distributions of ZnO nanoparticles.

Fig. S3. The first cycle of the CV profile at various scan rates for (a) UC-graphite anode (b) 2Zn-graphite anode.

Fig. S4. After normalization, the Nyquist plot of anode samples tested at a 1C rate with a potential range of 0.1 V - 3.0 V for the 10th, 100th, 200th, and 500th charge/discharge cycles for (a) UC-graphite, (b) 2Zn-graphite, (c) 5Zn-graphite, and (d) 10Zn-graphite.


Fig. S5. Coulombic efficiencies of graphite electrodes.

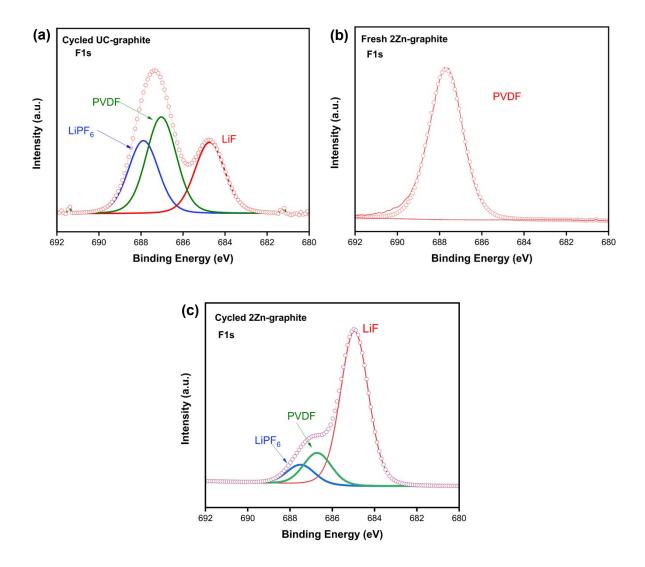

Fig. S6. TEM images of the (a) cycled UC-graphite electrode and (b) cycled 2Zn-graphite electrode after 500 cycles of charge/discharge.

Fig. S7. Scan survey of (a) cycled UC-graphite electrode, and (b) cycled 2Zn-graphite electrode after 100 cycles of charge/discharge.

Fig. S8. XPS spectra: (a) C1s of fresh 2Zn-graphite powders, and (b) O1s of fresh 2Zn-electrode.

Fig. S9. XPS F1s spectra of (a) cycled UC-graphite, (b) fresh 2Zn-graphite, and (c) cycled 2Zn-graphite.

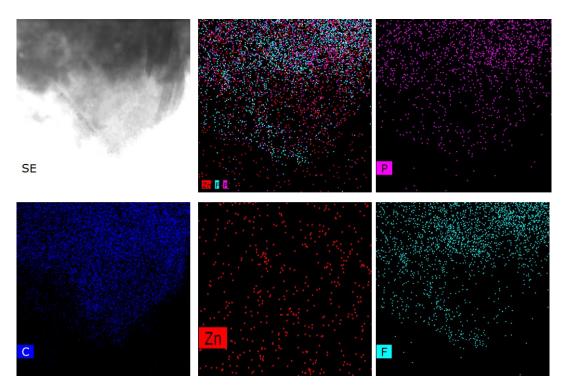


Fig. S10. TEM image and EDX mapping of 2Zn-graphite electrode after 500 cycles of charge/discharge.

Table S1. Comparative analysis of rate performance for 2Zn-graphite and related graphite-based anodes reported in recent studies.

Cell system	Anode structure	Rate Performance (mAh g ⁻¹)	Electrochemical Stability Window (V)	Reference
Graphite // Li	Uncoated graphite	26@5C	0.01-1.5 V	
	2Zn-graphite	109@5C		This work
Graphite // Li	Bare graphite	25@4C	0.01-1.5 V	
		10 @6C		1
	Aligned graphene array	75 @4C		
	+graphite	50@6C		
Graphite // Li	Bare graphite	50 @ 5C	0-1.5 V	
	Graphite coated with amorphous carbon	100 @5C		2
Graphite // Li	Pristine graphite	90@4C	0-1.5 V	
		80@6C		3
	P-S-graphite	100@4C		
		90@6C		
Graphite // Li	Graphite bare	117@2C	0.01-1.2 V	4
	Graphite with heat treatment	145@2C		·

References:

- 1. Zhang C, Dong L, Zheng N, Zhu H, Wu C, Zhao F, et al. Aligned graphene array anodes with dendrite-free behavior for high-performance Li-ion batteries. Energy Storage Materials. 2021;37:296-305.
- 2. Ma Z, Zhuang Y, Deng Y, Song X, Zuo X, Xiao X, et al. From spent graphite to amorphous sp²+ sp³ carbon-coated sp² graphite for high-performance lithium ion batteries. Journal of Power Sources. 2018;376:91-9.
- 3. Tu S, Zhang B, Zhang Y, Chen Z, Wang X, Zhan R, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li₃P-based crystalline solid–electrolyte interphase. Nature Energy. 2023;8(12):1365-74.
- 4. Jin Y, Yu H, Liang X. Simple approach: Heat treatment to improve the electrochemical performance of commonly used anode electrodes for lithium-ion batteries. ACS Applied Materials & Interfaces. 2020;12(37):41368-80.