Nicking Enzyme Assisted Amplification Combined with CRISPR-Cas12a System for One-Pot Sensitive Detection of APE1

Wei Dai^{1,2,#}, Han Wang^{3,#}, Hanxu Ji¹, Xian Xiao¹, Yiyuan Li¹, Dayang Jiang⁴, Yangkang Luo¹, Xianjin Xiao⁵, Bei Yan², Jie Yu^{1, *}, Longjie Li^{1, *}

¹ School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China

² Human Sperm Bank, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China

³ Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

⁴ Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008 • China

⁵ State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University,

Changsha 410082, China

[#] These authors contributed equally.

Corresponding author: yujie0326@163.com, lilongjie@whpu.edu.cn

Table S1. Sequences used in the study

Name	Sequence (5'—>3')	Role in the study
crRNA	UAAUUUCUACUAAGUGUAGAUC	Figure 1-5
	UAUAAUUUUUCGUGCAGUG	
Primer-1	AAATGACCTAG/AP/ACTGACCTCA	Figure 1-3
	AAC	
Template-1	CTATAATTTTTCGTGCAGTGTTAG	Figure 1-3
	TTCTAGGTCATTT	
Reporter Probe	BHQ-TTATTATT-FAM	Figure 1-5
D-:	AAATGACCTAG/AP/ACTGACCTTA	Figure 3
Primer-2	ТА	
	ACGACCAAATGACCTAG/AP/ACTG	Figure 3
Primer-3	ACCTTATA-P	
Template-2	CTATAATTTTTCGTGCAGTGTTAG	Figure 3
	TTCTAGGTCATTTGGTCGT	
Primer-4	ACGACCAAATGACCTAG/AP/ACTG	Figure 3
	ACCTTATA-C6 spacer	
Template- Primer	CTATAATTTTTCGTGCAGTGTTAG	Figure 3-5
	TTCTAGGTCATTTGGTCGTAAAAA	
	AACGACCAAATGACCTAG/AP/ACT	
	GACCTTATA-C6 spacer	

The modifications on probes were highlighted with bold font.

Figure S1. The structure and concentration distribution of the detection probe and the cleaved detection probe in the system.

A. Detection Probe (Primer-1 and Pemplate-1).

B. Detection Probe after cleavage (Primer-1 and Pemplate-1).

Table S2. Comparison of the analytical performance of some reported methods inAPE1 detection

_

Method strategy	Signal	Sensitivity	Operation complexity	Time	Assay temperature	Ref
A sensitive sensing system enables rapid activation of gated HRCA upon intelligent recognition of APE1.	fluores cence	0.0001U/m L	Simple	90min	37°C	[1]
Host-guest interaction between b-CDP and pyrene	fluores cence	0.05 U/mL	moderate	40 min	37 °C	[2]
Anintegratedelectrochemicalbiosensingsystemthatgivesconsiderationtobothimmunoassayand enzyme activityanalysis	Electr ochem ical signal	0.00518 U/mL	complex	>3h	37°C	[3]
closed cycle circuit (CCC)	fluores cence	7.8×10 ⁻⁵ U /mL	complex	1h	?	[4]
primer exchange reaction (PER) cascade rolling circle amplification (RCA)/ dimeric G- quadruplex	fluores cence	0.001U/mL	Simple	2h	37°C	[5]

Enzymes	1X R2.1 Components	Nature	Activity in r2.1	Optimum reaction temperature
APE1	50 mM NaCl 10 mM Tris-HCl 10 mM MgCl2 100 μg/ml Recombinant Albumin pH 7.9@25°C	DNA AP endonuclease that catalyzes the cleavage of DNA phosphodiester backbone at AP sites via hydrolysis leaving a 1 nucleotide gap with 3'-hydroxyl and 5' deoxyribose phosphate (dRP) termini	50%	37°C
Nb.BtsI		Nb.BtsI is a nicking endonuclease that cleaves only one strand of DNA on a double- stranded DNA substrate.	100%	37°C
Cas12a		Cas12a has been shown to specifically recognize and cleave double-stranded DNA (dsDNA), subsequently releasing single-stranded deoxyribonuclease (ssDNase) activity. This activity enables Cas12a to indiscriminately cleave nearby single-stranded DNA (ssDNA).	100%	37°C
BST 3.0		Bst 3.0 DNA Polymerase contains 5'→3' DNA polymerase activity with either DNA or RNA templates and strong strand displacement activity, but lacks 5'→3' and 3'→5' exonuclease activity.	100%	65°C

 Table S3.
 Introduction to the enzymes used in the thesis.

Reagents	Storage Buffer	Storage temperature	Shelf life
Bst 3.0 DNA Polymerase	100 mM KCl 10 mM Tris-HCl 0.1 mM EDTA 1 mM DTT 0.1% Triton® X-100 50% Glycerol pH 7.4 @ 25°C	-20°C	2 years
Nb.BtsI	10 mM Tris-HCl 50 mM NaCl 1 mM DTT 0.1 mM EDTA 200 μg/ml BSA 50% Glycerol pH 7.4 @ 25°C	-20°C	2 years
EnGen® Lba Cas12a (Cpf1)	500 mM NaCl 20 mM sodium acetate 0.1 mM EDTA 0.1 mM TCEP 50% Glycerol pH 6 @ 25°C	-20°C	2 years
10X NEB r2.1 buffer		-20°C	2 years
Detection Probe	TE buffer	-20°C	1 years
Reporter Probe	TE buffer	-20°C	1 years
crRNA	DEPC treated water	-20°C	6 months

Figure S2. Detection of APE1 in human oral epithelial cells and human serum samples. A. Oral epithelial cell sample. B. Healthy human serum and serum samples from simulated bladder cancer patients.

References

- Kang Q, Yang X, Du Y, Qi Y, He Z, Xiang H (2023) A molecular gated HRCA quick sensing system intelligently controlled by APE1. Microchemical Journal 191:108880
- [2] Zhou M, Qin S, Feng Z, Song C, Zhang H, Li W, Wang Q, Liu J, Huang J, Yang X (2018) A simple and sensitive assay for apurinic/apyrimidinic endonuclease 1 activity based on host-guest interaction of β-cyclodextrin polymer and pyrene. Chinese Chemical Letters 29 (6):973-976
- [3] Zhou M, Feng C, Mao D, Yang S, Ren L, Chen G, Zhu X (2019) An electrochemical biosensor integrating immunoassay and enzyme activity analysis for accurate detection of active human apurinic/apyrimidinic endonuclease 1. Biosensors and Bioelectronics 142:111558
- [4] Chai Q, Chen J, Zeng S, Zhu T, Chen J, Qi C, Mao G, Liu Y (2023) Closed cyclic DNA machine for sensitive logic operation and APE1 detection. Small 19 (23):2207736
- [5] Qi Y, Du Y, Kang Q, Yang X, Xiang H (2023) A novel self-feedback biosensor for label-free detection of APE1 by primer exchange reaction and rolling circle amplification/dimeric Gquadruplex. Microchemical Journal 193:109246