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Figure. S1. Spectral comparison of pure substances and mixtures and Dataset. Figure S1 ( a ) shows 
the comparison between the pure material data and the simulated ternary mixture data. Figure S1 
(b) shows the spectra of some binary and ternary data sets.
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Figure. S2. Demonstration of mixed concentration ratios and spectra for all binary mixtures
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Figure. S3. Demonstration of mixed concentration ratios and spectra for all ternary mixtures
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Figure. S4. Mixed probe molecular Raman spectroscopy under different conditions. (a) and (b) 
show the real spectra of binary mixtures against the simulated hybrid spectra, respectively

In Figure S4, the simulated mixture data is compared with the experimentally 
collected mixture data. As shown in Figure S4(a), the binary mixture demonstrates 
strong consistency in both peak positions and intensities. Figure S4(b) presents the 
comparison for ternary mixtures, where the number and positions of peaks are generally 
consistent. However, a closer examination reveals minor discrepancies: slight 
deviations in peak widths in the 700–800 cm⁻¹ range and differences in the intensity 
and relative relationships of smaller peaks in the 1100–1200 cm⁻¹ range. Despite these 
minor imperfections, the overall agreement remains high. These results confirm that the 
simulated spectra align closely with the experimentally collected spectra, validating 
that mixed spectra can be approximately described as linear superpositions of pure 
material spectra. However, considerations such as spectral broadening and noise 
filtering are necessary for simulations to better approximate real data. This validation 
provides valuable insights into the application of deep learning in Raman spectroscopy. 
Simulated data effectively supplement experimental data, addressing the issue of data 
scarcity and supporting the development of more robust and accurate deep learning 
models. In addition, by generating diverse and controlled mixed spectral data, the 
training effect of the neural network can be enhanced to make it more suitable for 
complex spectral analysis tasks, including the identification and quantitative analysis 
of chemical warfare agent simulants and their interactions.
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Figure. S5. Block diagram of ConvBlock structure

Figure S5 Structure of the ConvBlock module. The block consists of a 1D 
convolutional layer (Conv1D) with kernel size 3, dilation rate 2, and stride 2, followed 
by batch normalization (BatchNorm1D), and ReLU activation. This architecture allows 
for efficient feature extraction and downsampling of the input signal.
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Figure. S6. Schematic representation of the ResBlock architecture

The diagram illustrates the flow of data through multiple layers: starting with an 
input layer, followed by a split operation that creates a skip connection pathway. The 
main branch consists of LayerNorm, two Transpose operations interleaved with a ReLU 
activation, and a Conv1D layer. The skip connection maintains signal identity and 
merges with the main branch through addition. The final output passes through a ReLU 
activation layer. This residual block design facilitates gradient flow and enables deeper 
network architectures while mitigating the vanishing gradient problem.

The architecture demonstrates modern deep learning design principles, combining 
residual learning with normalization and convolution operations for effective feature 
transformation while maintaining gradient flow through the network.
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Figure. S7. GAN network evaluation: correlation and mse analysis for binary and ternary mixtures

The box plots in (a) show that both binary and ternary mixtures achieve extremely 
high correlation coefficients (>0.9997), demonstrating the superior learning ability of 
GAN networks, with binary mixtures having slightly higher median values. Panel (b) 
presents MSE distributions on a logarithmic scale, showing similarly low error rates for 
both mixture types, with ternary mixtures performing slightly better. The scatter plot in 
(c) reveals an inverse relationship between MSE and correlation coefficient, where 
higher correlations correspond to lower errors. These results highlight the GAN 
network's robust and accurate performance across varying system complexities.
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Figure. S8. GAN training process for binary mixtures. (a) Initial training stage showing noisy, 
unstructured spectral outputs from the generator; (b) Intermediate training stage demonstrating 
emerging spectral features and pattern formation; (c) Advanced training stage showing more refined 
spectral characteristics; (d) Final training stage outputs exhibiting well-defined peak features and 
stable spectral patterns.

The training process and final performance of the GAN framework for binary 
mixtures are comprehensively illustrated in Figure S8. Subplot (a) shows the generator's 
output during the initial training stages. At this phase, the generated spectra exhibit 
significant noise and lack well-defined peak structures, reflecting the generator's early 
learning phase in capturing the complex characteristics of multi-component spectra. As 
training progresses, subplot (b) demonstrates the intermediate training stage, where the 
generated spectra start to show emerging spectral features. The spectral patterns begin 
to take shape, indicating that the GAN is gradually learning the underlying spectral 
characteristics of the ternary mixture.
In the advanced training stage, as depicted in subplot (c), the spectral features become 
more refined and stable, showing improved consistency across different generations. 
Finally, in subplot (d), the generated spectra display well-defined peak features and 
highly stable spectral patterns, demonstrating the GAN's successful learning of 
complex three-component spectral relationships and its ability to generate high-quality 
spectral data for ternary mixtures.
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 Figure. S9. GAN comparison of generated and real data for binary mixtures

Figure S9 provides a direct comparison between the normalized Raman spectra of 
real and GAN-generated data. The nearly overlapping curves, with a correlation 
coefficient of 0.9998 and an MSE of 0.0000, emphasize the model's remarkable 
accuracy in replicating real spectral features.

These results confirm the robustness and effectiveness of the GAN framework in 
generating high-quality spectral data for binary mixtures, addressing the challenges of 
limited experimental datasets while ensuring predictive accuracy and reliability.
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Figure. S10. GAN training process for ternary mixtures
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Figure. S11. GAN comparison of generated and real data for ternary mixtures
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Figure. S12. Evaluation chart of the effectiveness of models enhanced with traditional data 
We re-amplified the data using translation and compression transformations, and followed the 

same modeling approach to train the model, obtaining model evaluation plots for the traditional data 
augmentation approach.

As shown in Figure S12, the classification results and error metrics of the traditional data 
augmentation method were compared with the results obtained using the spectra generated by 
WGAN-GP, as presented in Figure 4 of the manuscript. The classification accuracy of the traditional 
data augmentation method was 97.9%, with a misclassification rate of approximately 3.8% for the 
DMMP-DIMP-TEP mixture. The confusion matrix in Figure S12(a) shows that the 
misclassifications mainly occurred between the DMMP-DIMP and DMMP-TEP categories. In 
contrast, the spectra generated by WGAN-GP achieved perfect classification results, with an overall 
accuracy of 100%. This was due to our adjustment of the GAN parameters, allowing it to closely 
approximate the original spectra. After multiple attempts, the best training epoch interval was 
selected, which ensured that only the intensity was altered while the Raman shift remained nearly 
unchanged, and each spectrum was different. This effectively simulated machine errors during data 
acquisition.
The error metrics analysis further clarifies the differences between the two methods. As shown in 
the radar plot in Figure S12(b), the traditional data augmentation method shows higher Mean 
Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) 
compared to the radar plot of the WGAN-generated spectra in Figure 4(b), indicating superior data 
fidelity and model performance.
These results highlight the advantages of using spectra generated by WGAN over traditional data 
augmentation techniques, as the former not only improves classification accuracy but also 
minimizes error metrics, providing a more reliable and robust model for predicting mixture types. 
This comparison emphasizes the potential of WGAN to generate high-quality synthetic data that 
better reflects the complex spectral patterns inherent in the original mixtures, without introducing 
artifacts or distorting key features such as peak intensity.
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Figure. S13. Training and validation loss curves and learning rate schedule
The loss plot illustrates the training and validation loss curves across 50 epochs. 

Both the training loss (blue) and validation loss (orange) decrease significantly during 
the initial epochs, indicating that the model is learning effectively. By approximately 
the 10th epoch, the losses stabilize, suggesting convergence. Despite occasional 
fluctuations in validation loss, the gap between training and validation losses remains 
minimal, demonstrating the model's strong generalization capability and absence of 
overfitting.

The learning rate plot depicts the learning rate schedule applied during training. 
The learning rate (green) follows a cyclic pattern, decreasing gradually within each 
cycle and resetting to a higher value at the start of a new cycle. This approach helps the 
model escape local minima and ensures stable convergence by allowing periodic 
exploration of the loss surface. The schedule is particularly effective in optimizing the 
model's performance over the entire training process.

These results highlight the robustness of the training process, with an efficient 
balance between loss minimization and learning rate adjustment.
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Figure. S14. Test evaluation diagram of real mixture data. (a) The confusion matrix for training a 
model on real mixture data testing simulated data is shown. (b) The R2 plot of the training model is 
shown for testing simulated data with real mixture data

The evaluation results of the model trained on simulated data and the model tested 
on real mixture data are shown in Figure S14. Figure (a) shows the confusion matrix, 
which shows that the model effectively predicts the correct concentration for most of 
the real mixture data. The prediction accuracy for each category is very high, meaning 
that the model successfully distinguishes between different mixtures. At the same time, 
it also reflects the shortcomings of the simulation hybrid algorithm, and the interaction 
simulation of DIMP+TEP combination is not accurate enough. This also points the way 
for our next research. 

Figure (b) shows the R² curves for DMMP, DMMP-TEP, and TEP mixtures, 
showing a strong linear relationship between predicted and true concentrations. The R² 
values for DMMP, DMMP-TEP, and TEP are 0.9865, 0.9839, and 0.9760, respectively, 
confirming that the model has good predictive power even when applied to actual mixed 
data. These results show that the model trained on the simulated data can be effectively 
generalized to real-world applications, showing reliable performance in predicting 
concentrations in real-world mixture scenarios.
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Figure. S15.Concentration distribution across mixture categories. 75 The mixtures consist of five 
major groups of substances in varying proportions, containing both extreme and homogeneous 
proportions.


