## Rapid Detection of Multiple Gas Mixtures and Evaluation of Harmful Gas Removal Efficiency in Deck Decompression Chamber Using Dynamic Switching Mass Spectrometry

Qu Liang<sup>a, 1</sup>, Pingxiao Liu<sup>d, 1</sup>, Lei Zhao<sup>c, \*</sup>, Xuejun Wang<sup>c</sup>, Jun Zou<sup>c</sup>, Xun Bao<sup>a</sup>,

Qiangling Zhang<sup>a</sup>, Wei Xu<sup>a</sup>, Xue Zou<sup>a</sup>, Shifeng Wang<sup>d, \*</sup>, Chaoqun Huang<sup>a</sup>, Chengyin

Shen<sup>a, b, \*</sup>, Yannan Chu<sup>a, b</sup>

<sup>a</sup>Anhui Province Key Laboratory of Medical Physics and Technology, Institute of

Health and Medical Technology, Hefei Institutes of Physical Science, Chinese

Academy of Sciences, Hefei, 230031, P.R. China

<sup>b</sup>Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P.R. China

°No.719 Research Institute, China State Shipbuilding Corporation, 430200, Wuhan,

P.R. China

<sup>d</sup> Naval Medical Research Institute, Shanghai, 200433, P.R. China

<sup>\*</sup>Corresponding author; <sup>1</sup> Qu Liang, Pingxiao Liu, and Lei Zhao contributed equally to this work.

We performed targeted experiments using photoionization chemical ionization mass spectrometry (pCI-MS) and measured the full spectra of N<sub>2</sub> (as background), H<sub>2</sub>S, and NH<sub>3</sub>. The experimental results are as follows:

H<sub>2</sub>S measurement experiment: As shown in Fig.S1 (a), when detecting H<sub>2</sub>S, the signal intensity of H<sub>3</sub>O<sup>+</sup> reached  $3.08 \times 10^6$  cps, which clearly stands out as a dominant peak in the mass spectrum. Compared to the N<sub>2</sub> background spectrum, the signal intensity of the H<sub>2</sub>S•H<sup>+</sup> peak increased by 83-fold after introducing H<sub>2</sub>S, confirming that H<sub>2</sub>S undergoes ionization primarily through proton transfer with H<sub>3</sub>O<sup>+</sup>.

NH<sub>3</sub> measurement experiment: As shown in Fig.S1 (b), when detecting NH<sub>3</sub>, the signal intensity of  $H_3O^+$  was  $1.93 \times 10^6$  cps, again appearing as a strong characteristic peak in the mass spectrum. Compared to the N<sub>2</sub> background spectrum, the signal intensity of the NH<sub>3</sub>•H<sup>+</sup> peak increased by 4.74-fold after introducing NH<sub>3</sub>, indicating that NH<sub>3</sub> also ionizes via proton transfer with H<sub>3</sub>O<sup>+</sup>.

These experimental results clearly demonstrate that, under our measurement conditions,  $H_3O^+$  indeed acts as the primary ionization reagent, exhibiting the highest signal intensity among all detected ions. Furthermore, the protonated products of  $H_2S$  and  $NH_3$  ( $H_2S \cdot H^+$  and  $NH_3 \cdot H^+$ ) are indeed generated through proton transfer reactions with  $H_3O^+$ .



Fig. S1. (a) pCI-MS spectrum of H<sub>2</sub>S; (b) pCI-MS spectrum of NH<sub>3</sub>.

To demonstrate the characteristics of the dual-ion-source system, we compared the performance of pCI-MS and EI-MS in detecting representative target compounds in Fig. S2. As shown in Fig. S2 (a), when analyzing H<sub>2</sub>S (with N<sub>2</sub> as the carrier gas), the pCI-MS demonstrated superior performance, generating a prominent signal at m/z 35 (H<sub>2</sub>S•H<sup>+</sup>). Under identical conditions, the EI-MS failed to effectively detect the characteristic peak of H<sub>2</sub>S (m/z 34). However, in a complementary manner, the EI-MS exhibited significant response to N<sub>2</sub>, while the pCI-MS showed negligible variation.

Similarly, in Fig. S2 (b), during NH<sub>3</sub> detection (with N<sub>2</sub> as the carrier gas), the pCI-MS produced an intense signal at m/z 18 (NH<sub>3</sub>•H<sup>+</sup>), along with an NH<sub>3</sub><sup>+</sup> signal at m/z 17. Although the EI-MS displayed responses at the same m/z values, verification (Fig. S2 (b)-II) confirmed that these signals predominantly originated from background interference rather than NH<sub>3</sub>.

The pCI-MS exhibited higher selectivity and sensitivity for polar molecules (e.g., H<sub>2</sub>S and NH<sub>3</sub>) while effectively suppressing background gas interference. Conversely, the EI mode proved more suitable for detecting inorganic gases such as N<sub>2</sub>.



Fig. S2. (a) Fig. 2 (a) Comparison of pCI-MS and EI-MS spectrum for H<sub>2</sub>S; (b) Comparison of pCI-MS and EI-MS spectrum for NH<sub>3</sub>.