Electronic Supplementary Information (ESI) for

Colorimetric detection of methotrexate leveraging the halogen peroxidasemimicking activity of Bi₂WO₆ nanoflowers

Xueting wang, Xiaorong Sun, Zhongfang Hu, Guang-Li Wang*

Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China *Corresponding author: Guang-Li Wang *E-mail address: <u>glwang@jiangnan.edu.cn</u>

Fig.S1 The catalytic effect of Bi₂WO₆ on substrates as a mimic of halogen peroxidase: (A,B) Chromatogram and mass spectrum before the iodination reaction of TB. (C-F) Chromatogram and mass spectrum after the iodination reaction of TB.

Fig.S2 The catalytic effect of Bi₂WO₆ on substrates as a mimic of halogen peroxidase: (A,B) Chromatogram and mass spectrum before the bromination reaction of PR. (C,D) Chromatogram and mass spectrum after the bromination reaction of PR.

Fig.S3 The relative catalytic activity of Bi₂WO₆ iodoperoxidase in the presence of TB as a substrate vary with (A) reaction pH, (B) reaction temperature, and (C) reaction time, (D) over different storage time.

Fig.S4 The relative catalytic activities of Bi₂WO₆ bromoperoxidase in the presence of PR as a substrate changes with (A) reaction pH, (B) reaction temperature, and (C) reaction time.

Fig.S5 The absorbance at 620 nm of Iodoperoxidase mimetic enzyme the nanoenzyme catalytic system in the presence of different concentrations of (A) H_2O_2 or (C) KI; The steady-state kinetic analysis of the Bi_2WO_6 nanoenzyme catalytic reaction in the presence of different substrates (B) H_2O_2 or (D) KI (the inset is the Lineweaver-Burk plot).

Materials	Substrate	K _m (mM)	V _{max} (nM/s)	Reference	
CuO	H_2O_2	0.556	26.5	[1]	
CeO ₂ -X nanorods	H_2O_2	0.261	1.667	[2]	
Bi ₂ Te ₃	H_2O_2	16.593	0.417	[3]	
W-UiO	H_2O_2	0.555	0.317	[4]	
CeMOF	H_2O_2	0.1	4	[5]	
Bi ₂ WO ₆	H_2O_2	0.137	30.4	This work	
	I-	0.214	169.6		

 Table S1 Comparison of the kinetic parameters between Bi₂WO₆ and other reported nanomaterials

Fig.S6 UV-Vis spectra of oxTMB at different solutions. (a) $Bi_2WO_6 + H_2O_2 + KI+MTX$; (b) $Bi_2WO_6 + H_2O_2 + KI$ (the concentration of Bi_2WO_6 is 0.1 mg/mL, TMB is 0.05 mM, KI is 4.0 mM, H_2O_2 are 2.0 mM and MTX is 100 μ M).

Fig.S7 The relative catalytic activities of Bi₂WO₆ iodoperoxidase change with (A) reaction pH, (B) reaction temperature, and (C) reaction time under the condition that TMB was used as the substrate.

Mathad	Linear Range	LOD	Referenc	
Methou	(µM)	(µM)		
Fluorescence	2.9~117.4	0.95	[6]	
Fluorescence	1~300	0.33	[7]	
SERS	0~100	2.36	[8]	
Electrochemistry	5-75	1.98	[9]	
SERS	5~150	2.1	[10]	
Colorimetry	1-100	0.31	This work	

Table S2 Comparison with other reported methods for MTX detection.

Sample number	Spiked (µM)	Detected (µM)	Recovery (%)	RSD (%)
1	1.0	1.25 ± 0.04	125.0	4.0
2	10	10.49 ± 0.36	104.9	3.6
3	20	22.39 ± 0.66	119.5	3.5
4	50	47.86±1.31	95.0	2.6
5	75	80.00 ± 1.38	106.0	1.8
6	100	105.9 ± 1.22	105.9	1.2

Table S3Recovery of MTX in serum samples.

References

- 1. L. Wang, J. Hou, S. Liu, A. J. Carrier, T. Guo, Q. Liang, D. Oakley and X. Zhang, *Sens. Actuators B: Chem.*, 2019, **287**, 180-184.
- K. Herget, P. Hubach, S. Pusch, P. Deglmann, H. Gotz, T. E. Gorelik, I. A. Gural'skiy, F. Pfitzner, T. Link, S. Schenk, M. Panthofer, V. Ksenofontov, U. Kolb, T. Opatz, R. Andre and W. Tremel, *Adv. Mater.*, 2017, 29, 1603823.
- 3. S. S. Kulkarni, D. K. Tong, C. T. Wu, C. Y. Kao and S. Chattopadhyay, *Small*, 2024, **20**, e2401929.
- 4. W. Wei, L. Qiang, L. Jinyang, L. Yunhong, W. Ronggen, L. Yilan, H. Xiaobing and W. Ning, *Chem. Eng. J.*, 2021, **431**, 133483.
- 5. Y. Cheng, L. Liang, F. Ye and S. Zhao, *Biosensors (Basel)*, 2021, 11, 204.
- 6. P. Zuo, J. Liu, H. Guo, C. Wang, H. Liu, Z. Zhang and Q. Liu, *Anal. Bioanal. Chem.*, 2019, **411**, 1647-1657.
- 7. X. Wei, X. Si, M. Han and C. Bai, *Molecules*, 2022, **27**, 2118.
- 8. A. Subaihi, D. K. Trivedi, K. A. Hollywood, J. Bluett, Y. Xu, H. Muhamadali, D. I. Ellis and R. Goodacre, *Anal. Chem.*, 2017, **89**, 6702-6709.
- 9. I. N. Qureshi, A. Tahira, K. Aljadoa, A. M. Alsalme, A. A. Alothman, A. Nafady, A. Karsy and Z. H. Ibupoto, *J. Mater. Sci. Mater. Electron.*, 2021, **32**, 15594-15604.
- 10. Y. Göksel, K. Zor, T. Rindzevicius, B. E. Thorhauge Als-Nielsen, K. Schmiegelow and A. Boisen, *ACS Sens.*, 2021, **6**, 2664-2673.