The necessity of matrix-matched standards usage in quantitative imaging of specimens with calcareous skeleton by LA-ICP-MS

Ewelina Pollak-Kowa^{a,b}, Anna Telk^{a*}, Marcin Wieczorek^a

^aJagiellonian University, Faculty of Chemistry, Gronostajowa St 2, 30-387 Cracow, Poland

^bJagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza

St 11, 30-348, Cracow, Poland

*corresponding author e-mail: anna.telk@uj.edu.pl

Tal	ble	S1	Operating	conditions
-----	-----	-----------	-----------	------------

	ICP-MS spe	Laser system					
noromotor	wet analysis	LA an	alysis	naramatar		ESI 212	
parameter	ELAN DRC-e	ELAN DRC-e	NexION 5000	parameter	UP-200	E2L 213	
RF power [W]	1300	1300	1600	Wavelength [nm] 266		213	
Nebuliser gas [L min ⁻¹]	1.08	1.08	0.65	Ablation mode	line	line (imaging)	
Auxiliary gas [L min ⁻¹]	1.02	1.02	1.20	Spot size [µm]	20 20 x 20 (X' Shutter)		
Plasma gas [L min ⁻¹]	17.00	17.00	16.00	Scan speed [μm s ^{−1}]	80		
Sweeps	30	1	1	Offset between lines [µm]	(nc	20 9 gap)	
Reading	2	adjusted to the size of the Repetition analysed sample rate [Hz]			10		
Replicate	3	1	1	Power [%]	100 25		
Dwell time [ms]	Owell time5040[ms]		Energy density [J cm ⁻²]	7.22 8.86			
Measured masses	24	Mg, ⁸⁸ Sr, ¹³⁸ Ba, ⁴³ (Ca	He carrier gas flow rate [L min ⁻¹]		0.8	

Table S2 Digestion programme

Stage	Time [min]	Max. pressure [bar]	Min. pressure [bar]	Max. temperature [°C]	Min. temperature [°C]	Power [%]
I	5:00	20	18	260	250	60
II	5:00	28	26	280	270	85
	10:00	40	38	290	285	100

Fig. S1 The comparison of elements distribution without and with internal standardisation

Ablation type		²⁴ Mg					⁸⁸ Sr				¹³⁸ Ba			
	Pellet	Min. int.	Max. int.	Mean int.	CV (%)	Min. int.	Max. int.	Mean int.	CV (%)	Min. int.	Max. int.	Mean int.	CV (%)	
roctongular	1	0.154	0.553	0.268	18	0.131	3.847	0.488	65	0.036	7.675	0.810	138	
area of 15 lines	2	0.140	0.523	0.267	17	0.119	1.992	0.375	51	0.065	4.519	0.326	144	
	3	0.125	0.553	0.256	25	0.134	2.178	0.488	62	0.051	6.426	0.752	148	
F lines	1	0.151	0.450	0.261	8	0.675	6.839	0.502	14	0.300	5.072	0.770	28	
5 lines located randomly	2	0.169	0.452	0.268	7	0.472	8.948	0.481	54	0.178	5.803	0.758	12	
	3	0.176	0.494	0.272	4	0.896	3.896	0.560	15	0.269	5.732	0.882	41	

Ca signals in the obtained pellets images and of the averaged standardised signals from the five ablated lines located randomly at each pellet

Table S3 *Minimal, maximal, mean intensity and coefficient of variation (standard deviation/ mean value x 100%) of the normalised against*

		²⁴ Mg				⁸⁸ Sr				¹³⁸ Ba			
Ablation type	Pellet	Min. int. [cps]	Max. int. [cps]	Mean int. [cps]	CV [%]	Min. int. [cps]	Max. int. [cps]	Mean int. [cps]	CV [%]	Min. int. [cps]	Max. int. [cps]	Mean int. [cps]	CV [%]
rectangular	1	325,207	1,210,994	632,866	18	295,474	7,743,583	1,162,928	67	81,210	18,453,375	1,938,846	139
area of 15 lines	2	307,089	2,804,460	567,611	24	280,820	3,215,789	786,164	49	149,645	9,218,855	684,701	147
	3	308,553	1,201,083	600,207	27	310,591	4,416,103	1,161,799	65	114,440	14,825,949	1,831,928	153
E lines	1	315,382	1,138,577	586,165	12	301,053	5,254,136	1,129,936	18	129,490	12,495,567	1,738,197	31
5 lines located randomly	2	371,406	996,389	607,622	4	260,375	7,299,223	1,078,714	50	163,632	20,764,737	1,673,484	16
	3	278,660	1,088,650	605,332	8	291,584	3,516,461	1,243,942	15	151,657	13,157,906	1,963,881	41

 Table S4 Minimal, maximal, mean intensity and coefficient of variation (standard deviation/ mean value x 100%) of the non-normalised

signals in the obtained pellets images and of the averaged signals from the five ablated lines located randomly at each pellet

Fig. S3 Calibration curves used for LOD and LOQ establishment

138Ba

Table S5 The concentration of elements in the in-house reference material establishe	d
against various calibration standards without internal standardisation	

Element	Laser	calibration standard	I NIST 610	calibration standard I	liquid-powder calibration standards		
	(nm)	c (mg kg⁻¹)	RE (%)	c (mg kg⁻¹)	RE (%)	c (mg kg⁻¹)	RE (%)
²⁴ Mg	266	141.9 ± 4.9	30	28.8 ± 0.9	-74		
	213	97.2 ± 0.5	-11	11.7 ± 0.2	-89		-
886 -	266	19,840 ± 790	721	25,900 ± 1,000	973	1,787 ± 69	-26
5551	213	11,380 ± 260	371	8,650 ± 200	258	1,741 ± 39	-28
13800	266	193.8 ± 8.1	883	213 ± 9	985	19.6 ± 0.9	-1
Ба	213	114.9 ± 2.9	483	61.3 ± 1.6	211	26.8 ± 0.7	36

Fig. S4 Internal standardisation problem with a settlement plate

