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Supplementary Material 1: Fourier Transform Infrared Spectroscopy Theory

Infrared spectroscopy is based on the principle of molecular vibration and rotational energy level 
transitions. When infrared light irradiates a sample, the molecules in the sample absorb specific 
wavelengths of infrared light, causing changes in the molecular vibration or rotational energy levels. 
Different chemical bonds and functional groups have specific vibrational frequencies, and thus absorb 
different wavelengths of infrared light. By measuring the absorption of infrared light by the sample, the 
infrared spectrum of the sample can be obtained, allowing for the analysis of the molecular structure of 
the sample.

Fourier Transform Infrared Spectroscopy (FTIR)  [1] is an efficient infrared spectroscopy technique. 
The core of FTIR lies in using the Michelson interferometer to generate an interferogram, which is then 
converted from the time domain to the frequency domain through Fourier transform, thereby obtaining 
an infrared spectrum. The Fourier transform equation is defined as:

𝐼(𝜈) =
∞

∫
‒ ∞

 𝐼(𝑥) ⋅ 𝑒 ‒ 𝑖2𝜋𝜈𝑥𝑑𝑥#(𝑆1)

where  is the light intensity at frequency v,  is the measured interference signal when the 𝐼(𝑣) 𝐼(𝑥)

optical path difference is x.

Supplementary Material 2: Digital Deparaffinizing

The process of digital deparaffinizing is accomplished by the extended multiplicative signal 
correction (EMSC) algorithm. The EMSC algorithm is based on the principle of multivariate statistics 
and achieves correction and standardization of spectral data by modeling and correcting the difference 
between the sample and reference spectra. The quantitative measurement of vibrational absorption 
spectra is based on the Lambert-Beer Law, according to which the absorption spectrum is proportional 
to the effective optical range length, and for transparent samples containing a single light-absorbing 

chemical, the absorbance  can be given by the following equation:𝐴(�̃�)
𝐴(�̃�) = 𝑘(�̃�) × 𝑐 × 𝑏#(𝑆2)

where is the characteristic absorbance of a particular component at a particular wavenumber, b is 𝑘(�̃�) 

the optical range length, and c is the concentration of the absorbing chemical in the sample. The 
spectral change caused by a change in optical range length is usually expressed as a “multiplicative” 
change.

Since biochemical samples are usually very complex in composition, there is a considerable part of 
the overlap of the absorption characteristics in many different bio-molecular components of the spectra, 
at this point, Lambert-Beer law can be written as a superposition of the absorbance of several absorbing 
substances:

𝐴(�̃�) = ( 𝑛

∑
𝑖 = 1

(𝑐𝑖 × 𝑘𝑖(�̃�))) × 𝑏#(𝑆3)

where  is the single component absorption spectrum,  is the concentration of component i, and b 𝑘𝑖(�̃�) 𝑐𝑖

is the optical range. Here we assume that the optical range length b is comparable for all components, 
an assumption that is usually applied to sufficiently homogeneous samples.

Although the concentrations of the various biochemical components of biological tissue are usually 



unknown, the overall shape of the IR absorption spectra obtained from biological samples is generally 
very similar, which means that we can approximate the individual spectra by the average spectrum of 
the sample as a whole, and thus we can use the average of all the spectra of the sample plus a small 

deviation to represent the measured absorption spectra  :𝑘(�̃�)
𝑘𝑖(�̃�) = 𝑥(�̃�) + ∆𝑘𝑖(�̃�)#(𝑆4)

where  denotes the average spectra of all the spectra of the tissue sample and  denotes the 𝑥(�̃�) ∆𝑘𝑖(�̃�)

deviation of the individual absorption spectra from the average spectrum. Combining Eq. (S3) with Eq. 
(S4) we can get:

𝐴(�̃�) = ( 𝑛

∑
𝑖 = 1

(𝑐𝑖 × 𝑥(�̃�) +
𝑛

∑
𝑖 = 1

(𝑐𝑖 × ∆𝑘𝑖(�̃�))) × 𝑏#(𝑆5)

Also, after normalization, the sum of the concentrations of all substances should be 1, so that we can 
get the final form of the absorption model for Lambert-Beer law:

𝐴(�̃�) = (𝑥(�̃�) +
𝑛

∑
𝑖 = 1

(𝑐𝑖 × ∆𝑘𝑖(�̃�))) × 𝑏#(𝑆6)

To show that a single absorption spectrum is similar to an average spectrum, we can use the 
following form instead of the above equation:

𝐴(�̃�) = 𝑥(�̃�) × 𝑏 + 𝑒(�̃�)#(𝑆7)

where the residual part .
𝑒(�̃�) =

𝑛

∑
𝑖 = 1

(𝑐𝑖 × ∆𝑘𝑖(�̃�))

The multiplicative signal correction (MSC) model is an extension of the Lambert-Beer model shown 
in Eq. (S7), which represents the absorption spectrum as a linear sum of a constant baseline a and Eq. 
(S7). The basic MSC model is as follows:

𝐴(�̃�) = 𝑎 + 𝑏𝑥(�̃�) + 𝑒(�̃�)#(𝑆8)
The unknown parameters in Eq. (S8) can be estimated by least squares regression. To estimate the 

parameters a and b, the spectra are corrected as follows:
𝐴𝑐𝑜𝑟𝑟(�̃�) = (𝐴(�̃�) ‒ 𝑎)/𝑏#(𝑆9)

The above equation approximates each spectrum by averaging the spectrum and a constant baseline, 
but in biological samples, baseline variations in the spectra cannot generally be represented by a 
constant straight line. EMSC is an improvement on the MSC method by expanding the baseline with a 
baseline of arbitrary slope, a quadratic term, or a term of higher polynomial order, so that nonlinear 
effects present in the spectra are included in the calculations, and the EMSC model equation is 
formulated as follows:

𝐴(�̃�) = 𝑎 + 𝑥(�̃�) × 𝑏 + 𝑑1 × �̃� + 𝑑2 × �̃�2 + ⋯ + 𝑑𝑝 × �̃�𝑝 + 𝑒(�̃�)#(𝑆10)
Based on Eq. (S10), we add the absorption spectra of undesired contaminants in the sample to obtain 

the final spectral model:

𝐴(�̃�) = 𝑎 + 𝑥(�̃�) × 𝑏 + 𝑐
𝑚

∑
𝑗 = 1

𝑘𝑗(�̃�) × 𝑐𝑗 + 𝑑1 × �̃� + 𝑑2 × �̃�2 + ⋯ + 𝑑𝑝 × �̃�𝑝 + 𝑒(�̃�)#(𝑆11)

Similarly, we can estimate the unknown parameters in Eq. (S11) by least squares regression, and the 
final corrected spectrum is:



𝐴𝑐𝑜𝑟𝑟(�̃�) =

𝐴(�̃�) ‒ 𝑎 ‒ 𝑑1 × �̃� ‒ 𝑑2 × �̃�2 ‒ ⋯ ‒ 𝑑𝑝 × �̃�𝑝 ‒ 𝑐
𝑚

∑
𝑗 = 1

𝑘𝑗(�̃�) × 𝑐𝑗

𝑏
#(𝑆12)

In this way, we can exclude the effects of baseline drift and contaminants such as paraffin on the 
spectra. At the same time, by fitting the obtained coefficients we can exclude the background spectra 
mixed in the sample and avoid their influence on the subsequent modeling.

In this work, we chose a baseline polynomial fit with a term number of p=4 and employed spectra 

from the regions of pure paraffin for building the spectral contaminant model . The principal components 𝑘𝑗

analysis (PCA) was used to decompose the models of paraffin. Fig. S1(a) and Fig. S1(b) present the 
spectral dataset obtained from the pure paraffin region and the paraffin model (principal component) 
derived using PCA decomposition [2]. Component 1 carries more information of wavenumbers greater 
than 1500 cm-1, while component 2 carries more information of wavenumbers which are lower than 
1500 cm-1. The spectra before and after digital deparaffinizing are illustrated in Fig. S1(c) and Fig. 
S1(d), respectively. The results indicate that the paraffin bands near 1473, 1462, and 1373 cm⁻¹ in the 
spectra, along with other spectral interferences, are mostly eliminated.

Fig. S1. Results of paraffin modeling and digital deparaffinizing. (a) The absorption spectra from the pure paraffin region; 

(b) Paraffin models calculated with PCA; (c) The average spectra plotted from raw data; (d) The average spectra plotted from the 

digitally deparaffinizing data where the paraffin peaks at 1473 cm-1, 1462 cm-1 and 1373 cm-1 were mostly neutralized.

Supplementary Material 3: IRS-DANN Model Development

The objective functions for the label classification part and domain identification part of the model 
are respectively the cross-entropy loss function and focal loss. The hyperparameters  and  of the 𝛼 𝛾

focal loss are 0.6 and 2 respectively. Minimization of the objective function was achieved by the Adam 

optimizer, with the initial learning rate to be , and the weight decay to be .Both the 1 × 10 ‒ 3 1 × 10 ‒ 6

label classifier and domain discriminator are a three-layer MLP with ReLU function and LayerNorm. 
All layers in the ISDANN were initialized randomly. In this study, we chose three structures of CNN, 



Bi-LSTM, and Transformer backbone for the IRS-DANN model.

A. CNN-based Encoder

The backbone of the CNN structure is a Resnet network [3] containing 8 residual blocks. In this 
study, the first step is to map the FTIR spectrum into a one-dimensional array containing 782 points. 
Second, after a convolution of 64 kernels with a size of 71 and a 3×1 maximum pooling with a step 
size of 2, the dimensionality of the feature map is reduced to 391. Third, 8 residual modules are used 
for feature extraction (R1-R8 are used here to represent), where R1 and R2 have 64 convolution kernels 
of size 3 × 1, R3 and R4 have 128 convolution kernels of size 3 × 1, R5 and R6 have 256 convolution 
kernels of size 3 × 1, R7 and R8 have 512 convolution kernels of size 3 × 1, R3, R5 and R7 uses 2× 
stride to reduce the size of feature map. The feature map is finally transformed into a feature vector of 
length 512 by an adaptive mean pooling and flattening operation.

Fig. S2. The network structure of CNN-based backbone.

B. Bi-LSTM-based Encoder

As shown in Fig. S3, the Bi-LSTM-based encoder consists of two convolution layers and a Bi-
LSTM layer. First, the FTIR spectrum is mapped into a one-dimensional vector with a length of 782.  
Second, a convolutional layer is then used to expand the number of channels of the input spectrum to 
64, where the size of the convolution kernel is 3 and the size of the padding is 1. Third, the feature 
maps output from the convolutional layer are transposed and fed into a one-layer bidirectional LSTM 
network. The hidden layer size of the Bi-LSTM neural network is 100. The output of the BILSTM 
network is then transposed and the number of channels is reduced to 1 by a convolution with kernel 
size of 3 and padding size of 1.



Fig. S3. The network structure of Bi-LSTM-based backbone.

C. Transformer-based Encoder

As shown in Fig. S4, the main component of the Transformer-based encoder is a 4-layer transformer 
model with residual structures [4]. Transformer is a deep learning model architecture suitable for 
sequence-to-sequence tasks, and its key structure lies in the multi-head self-attention mechanism, 
where multiple self-attention layers are stacked and integrated. Fig. S6 illustrates the process of the 
self-attention module in transformers. The Conv Fusion module is a residual structure for connecting 
the outputs of different transformer layers, and the corresponding process is shown in Fig. S5. 
Essentially, it is a 2d convolution, in which the outputs of different layers are stacked and then 
convolved into the residual output with the number of channels minus 1 and the size remains 
unchanged. In the transformer-based encoder, the FTIR spectrum is first expanded to 64 channels by a 
convolutional block with a convolutional kernel size of 3 and a padding size of 1. After transposition, 
the convolved spectrum is embedded in a fully connected layer with the number of units in the fully 
connected layer being 128. The embedded spectrum is then fed into the residual transformer model for 
feature encoding. The encoded output is passed through an average pooling layer to obtain the final 
feature vector used for classification.



Fig. S4. The network structure of Transformer-based backbone.



Fig. S5. Diagram of the convolution fusion module in the Transformer backbone.

Fig. S6. Illustration of the attention mechanism in transformers. (a) Self-attention module. (b) Multi-head attention mechanism.

Supplementary Material 4: Grad-weighted Class Activation Mapping

The Grad-weighted class activation mapping (Grad-CAM) technique can be leveraged to measure 
the importance of different spectral locations for the prediction. Based on the improvement of the 
original CAM, Grad-CAM obtains the weights by solving for the bias derivative of the category 
confidence of the network output on the feature map. The steps to generate our spectral Grad-CAM are 



as follows:
1. For a given spectral input into the network, forward propagation is performed to obtain the feature 

map  of the last convolutional layer, k represents the channel index.𝐴𝑘

2. Perform backpropagation to obtain the gradient  of the probability  of the category c of the 

∂𝑦𝑐

∂𝐴𝑘 𝑦𝑐

network output with respect to .𝐴𝑘

3. Calculate weights based on gradient: 
𝛼𝑐

𝑘 =
1
𝑁∑

𝑖
∑

𝑗

∂𝑦𝑐

∂𝐴 𝑘
𝑖,𝑗

 .

4. Calculate the Grad-CAM: . 
𝐺 𝑐

𝐺𝑟𝑎𝑑 ‒ 𝐶𝐴𝑀 = 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒(𝑅𝑒𝐿𝑈(∑
𝑘

𝛼𝑐
𝑘𝐴𝑘))

Supplementary Material 5: T-distributed Stochastic Neighbor Embedding

T-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality reduction 
algorithm, primarily used to map high-dimensional data into a low-dimensional space for 
visualization and analysis. Its core idea is to maintain the local similarity of data points in both 
high-dimensional and low-dimensional spaces, while minimizing the distortion of global structure.

In high-dimensional space, t-SNE measures the similarity by calculating the conditional 
probability between data points. The similarity between data points  and  is defined as:𝑥𝑖 𝑥𝑗

𝑃𝑗|𝑖 =
exp ( ‒∥ 𝑥𝑖 ‒ 𝑥𝑗 ∥ 2/2𝜎2

𝑖)
∑
𝑘 ≠ 𝑖

 𝑒𝑥p ( ‒∥ 𝑥𝑖 ‒ 𝑥𝑘 ∥ 2/2𝜎2
𝑖)

#(𝑆13)

where , which is controlled by the perplexity parameter, is the bandwidth of the Gaussian kernel 𝜎𝑖

for the data point  and  represents the probability of point  being a neighbor of point .𝑥𝑖 𝑃𝑗|𝑖 𝑥𝑗 𝑥𝑖

To simplify the calculation, t-SNE symmetrizes the conditional probabilities into joint 
probabilities to compute the similarity distribution :𝑃𝑖𝑗

𝑃𝑖𝑗 =
𝑃𝑗|𝑖 + 𝑃𝑖|𝑗

2𝑛
#(𝑆14)

where n is the total number of data points.
In the low-dimensional space, t-SNE uses the t-distribution to measure the similarity between 

data points. For low-dimensional points  and , their similarity can be defined as:𝑦𝑖 𝑦𝑗

𝑄𝑖𝑗 =
(1 +∥ 𝑦𝑖 ‒ 𝑦𝑗 ∥ 2) ‒ 1

∑
𝑘 ≠ 𝑙

 (1 +∥ 𝑦𝑘 ‒ 𝑦𝑙 ∥ 2) ‒ 1
#（𝑆15）

The goal of t-SNE is to make the similarity distribution P in the high-dimensional space and the 
similarity distribution Q in the low-dimensional space as consistent as possible. The difference 
between these two distributions can measured using the Kullback-Leibler (KL) divergence:

𝐾𝐿(𝑃 ∥ 𝑄) = ∑
𝑖 ≠ 𝑗

 𝑃𝑖𝑗𝑙𝑜g
𝑃𝑖𝑗

𝑄𝑖𝑗
#(𝑆16)

By employing the gradient descent method to optimize the positions of points in the low-



dimensional space and gradually reduce the KL divergence, the final projection of high-
dimensional data into the low-dimensional space can be obtained.

Supplementary Material 6: T-SNE Visualization of Benchmark Models
Fig. S7 shows the 2D t-SNE visualization of the output features of the benchmark models’ encoder. 

It can be seen that the data still exhibits a tendency to cluster according to the source domain, with 
some overlap observed among samples of different categories.

Fig. S7. 2D visualization of the output features of the benchmark model’s encoder using t-SNE. Scatter plots are labeled for 

different categories (left) and patients (right). Each row from top to bottom represents the CNN model, the LSTM model, and the 

Transformer model respectively.

Supplementary Table 1: 
Table S1. FTIR Spectra Dataset Information

Patients Index Sample diagnosis Number of points Histopathologic classification

1 Malignant 448 invasive adenocarcinoma

2 Malignant 491 invasive adenocarcinoma



3 Malignant 1126 invasive adenocarcinoma

4 Malignant 4500 invasive adenocarcinoma

5 Malignant 2642 adenocarcinoma in situ

6 Malignant 1500 microinvasive adenocarcinoma

7 Malignant 1500 invasive adenocarcinoma

8 Malignant 666 invasive adenocarcinoma

9 Malignant 4500 invasive adenocarcinoma

10 Benign 1412 invasive adenocarcinoma

11 Benign 1500 chronic granulomatous inflammation

12 Benign 1500 chronic granulomatous inflammation

Malignant 840
13

Benign 449
invasive adenocarcinoma

Malignant 392
14

Benign 702
invasive adenocarcinoma

Malignant 1406
15

Benign 900
invasive adenocarcinoma
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