Electronic Supporting Information

For

Headspace separation combined fluorescence strategy for highly selective detection of hydrogen sulfide using silver nanocluster assemblies as probe via a self-made device

Ying Zhu[†], Ran Li[†], Zhongshuai Zhao[†], Zhong De Liu^{*†}

[†]Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

Table of Contents

Figure S1 Schematic diagram of the three most common types of fluorescence probes for H_2S . (a, b) H_2S -involved reduction of azides mechanism; (c) nucleophilic reaction mechanism; (d) formation of metal-sulfur bond mechanism.

Figure S2 The long term stability of the PL property of the as-prepared AgNCs@TSA.

Figure S3 Hydrodynamic diameter distribution of AgNCs@TSA after reaction with Na₂S.

Figure S4 Time-resolved fluorescence decays of the AgNCs@TSA recorded before and after the treatment with H_2S .

Figure S5 Synthesis optimization of AgNCs@TSA (a) synthesis time optimization of AgNCs@TSA; (b) synthetic proportional optimization of AgNCs@TSA.

Figure S6 The optical properties and response of AgNCs@TSA to H₂S between different batches.

Concentration: AgNCs@TSA, 0.2 mg/mL; H₂S 80 µM.

Table S1. Comparison on the analytical performance of the different optical probes for H_2S determination.

^{*} To whom all correspondence should be addressed. Tel: 86-23-68251048; Fax: 86-23-68251048; orcid.org/0000-0001-9638-7163; E-mail: 2297225390@qq.com

Figure S1 Schematic illustration of the three most common types of fluorescence probes for H_2S . (a, b) H_2S -involved reduction of azides mechanism; (c) nucleophilic reaction mechanism; (d) formation of metal-sulfur bond mechanism.

Figure S2 The long term stability of the PL property of AgNCs@TSA.

Figure S3 Hydrodynamic diameter of the AgNCs@TSA after being treated with increasing sulfide concentration as measured by DLS, which was performed at a 90° scattering angle in the ambient temperature of 25°C.

Figure S4 Time-resolved fluorescence decays of the AgNCs@TSA recorded before and after the treatment with H_2S .

Figure S5 The optimization of synthesis condition of the AgNCs@TSA. (a) influence of synthesis time on the PL of AgNCs@TSA; (b) effect of mole ratio between Ag^+ ions and TSA ligands on the PL of the as-prepared AgNCs@TSA.

Figure S6 The optical properties and response of AgNCs@TSA to H_2S between different batches. Concentration: AgNCs@TSA, 0.2 mg/mL; H_2S 80 μ M.

Material	Liner range	LOD	Reaction Time	Interference	Referen ce
Cda-DNP	0-30 μΜ	0.18 μΜ	60 min	yes (GSH)	(1)
6-(2,4-dinitrophenoxy)-2-	0-70 μΜ	76 nM	30 min	yes (GSH, Cys)	(2)
Mn-doped ZnS QDs	2-100 μM	0.2 μΜ	30 min	no	(3)
AgNF@dsDNA	1-10 µM	0.53 µM	120 min	no	(4)
Tb ³⁺ @Cu1	0-1.6 mM	1.2 µM	2 min	no	(5)
Cu-ZnMOF	0.1-80 μΜ	35 nM	10 min	yes (Cys, Hcy, H ₂ O ₂)	(6)
NanoBODIPY	0-8 μΜ	7 nM	30 min	no	(7)
CuO@TO@UiO-66	0-100 μΜ	0.51 μM	4.5 h	yes (GSH)	(8)
Ag NCs	0-3 μΜ	32 nM	5 min	yes $(H_2PO_4^-)$	(9)
Au NCs-Cyl	0-20 μM	1.83 µM	90 s	serious (cation)	(10)
AgNCs@TSA	0.1-100 μΜ	72.2 nM	3 min	no	This

Table S1. Comparison on the analytical performance of the different optical probes for H_2S determination.

(1) Yang, L.; Zhao, J.; Yu, X.; Zhang, R.; Han, G.; Liu, R.; Liu, Z.; Zhao, T.; Han, M.-Y.; Zhang, *Z. Analyst.* **2018**, *143*, 1881-1889.

(2) Wang, H.; Wang, J.; Yang, S.; Tian, H.; Liu, Y.; Sun, B. Food Chem. 2018, 257, 150-154.

(3) Wu, P.; Zhang, J.; Wang, S.; Zhu, A.; Hou, X. Chem. Eur. J. 2014, 20, 952-956.

(4) Xie, S.; Fu, T.; He, L.; Qiu, L.; Liu, H.; Tan, W. Anal. Chem. 2019, 91, 15404-15410.

(5) Zheng, X.; Fan, R.; Song, Y.; Wang, A.; Xing, K.; Du, X.; Wang, P.; Yang, Y. J. Mater. Chem. C. 2017, 5, 9943-9951.

(6) Ling, P.; Qian, C.; Yu, J.; Gao, F. Chemical communications. 2019, 55, 6385-6388.

(7) Zhao, C.; Zhang, X.; Li, K.; Zhu, S.; Guo, Z.; Zhang, L.; Wang, F.; Fei, Q.; Luo, S.; Shi, P.; et al. J. Am. Chem. Soc. 2015, 137, 8490-8498.

(8) Ma, Y.; Zhang, C.; Yang, P.; Li, X.; Tong, L.; Huang, F.; Yue, J.; Tang, B. *Nanoscale*. **2018**, *10*, 15793-15798.

(9) Yan, Y.; Zhang, K.; Yu, H.; Zhu, H.; Sun, M.; Hayat, T.; Alsaedi, A.; Wang, S. *Talanta*. **2017**, *174*, 387-393.

(10) Yu, Q.; Gao, P.; Zhang, K. Y.; Tong, X.; Yang, H.; Liu, S.; Du, J.; Zhao, Q.; Huang, W. *Light Sci. Appl.* **2017**, *6*, e17107.