Neural network-shaped composite of α -MnO₂ with N-doped graphene for electrocatalytic reduction of hydrogen peroxide in human urine sample

Haiyan Song ^{a*}, Lihua Huo^b, Yingying Li^a, Xuefen Liu^a, Chunxiao He^a, Bowan Wu^a, Lipeng Wang^a, Lina Zhu^c, Jiaqi

Liu^c, Bobo Wang^a, Jiaying Meng^a and Zhenyu Cheng^{a*}

^a Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, P.R. China

^b Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China

^c College of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, P.R. China

* Corresponding author address: College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China. E-mail address: <u>haiyan514319614@163.com</u>, <u>chengzhenyu0633@126.com</u>

S1-1 Regents and Instrumentation

 $MnSO_4 \cdot H_2O$, $AgNO_3$ and $(NH_4)_2S_2O_8$ were all purchased from Beijing Chemical reagent Co., Beijing, China; Chitosan (Cs) were bought from Aldrich Co., USA; H_2O_2 , KCl, NaCl, CaCl₂, KNO₃, CuSO₄, Na₂SO₄, NaNO₃ and NH₄Cl, ascorbic acid and uric acid were brought from Tianjin Tianli Chemical reagent Co., Tianjin, China; H_2O_2 aqueous was diluted when it would be used. Appropriate proportions of KH₂PO₄ and K₂HPO₄ was used to prepare phosphate buffer (0.05 mol·L⁻¹, pH 7.4) as the supporting electrolyte.

X-ray diffraction meter (XRD, D/MAX-III-B-40kV, Japan) was adopted to investigate the N@Gr/ α -MnO₂ composite with Cu K_{α} radiation (λ = 1.5406) during the bragg range from 10 to 80 degree. Micromorphology of N@Gr/ α -MnO₂ were performed on scanning electron microscope (SEM, Hitachi S-4800, Hitachi, Japan) at the operational power of 15.0 kV. X-ray photoelectron spectroscopy (XPS, Kratos Amicus, Manchestert, England, hv = 1486.6 eV) was used to determine the valence state of the product within ± 0.2 eV deviation in the binding energy position with Al K_{α} radiation.

Tests about electrochemical were all performed on an electrochemical workstation (CHI-760E, Shanghai Chenhua

Apparatus Co., Shanghai, China) equipped with standard three-electrode system, in which the modified glassy carbon electrode with diameter of 5 mm was selected as working electrode. Platinum wire and saturated calomel electrode (SCE) were used as the auxiliary electrode and reference electrode, respectively.

S1-2 Pretreatment process of glassy carbon electrode

GCE (d=5 mm) was polished via using different sizes of alumina slurry (0.3, 0.1 and 0.05 μ m) consecutively, and then treated by ultrasound wave in 50% nitric acid aqueous, absolute ethanol and deionized water, successively. Thereafter, the electrode was activated in 0.25 mol·L⁻¹ H₂SO₄ by the cycled (20 cycles) potential ranged from -1.0 V to 1.0 V.

S1-3 Investigation of experiment conditions

The optimal applied potential used in this work was chosen according to comparision of amperometric response to equal amount of H_2O_2 (Fig. S1). The catalytic current of H_2O_2 increases with the decreasing of the applied potential (-0.2, -0.3, -0.4 and -0.5 V); however, the noise current also increases. When catalytic response and noise current are considered together, -0.4 V is chosen as the optimal potential in the whole determination process of H_2O_2 .

Fig. S1

Fig. S1 Amperometric responses obtained from N@Gr/α-MnO₂/GCE in addition of H₂O₂ at different applied potentials in phosphate buffer (pH 7.4).

The effect of different pH values (5.6, 6.2, 6.8, 7.4, 8.0 and 8.6) of phosphate buffer on H_2O_2 (Fig. S2) catalytic response was also investigated. As shown in Fig. S2, the catalytic current of the system (pH = 7.4) is larger than those of other five pH values, thus, 7.4 is chosen as the optimal pH in the later experiments.

Fig. S2

Fig. S2 The relationship of E_{pc} and I_{pc} of H_2O_2 against different pH (5.6, 6.2, 6.8, 7.4, 8.0 and 8.6) values.

The modifier content of N@Gr/ α -MnO₂ (5, 10, 15, and 20 μ L) on GCE was also investigated. As shown in Fig. S3, the catalytic current of 10 μ L is the largest for H₂O₂ among the four modifier content. Therefore, 10 μ L is chosen as the optimal modifier content.

Fig. S3 Amperometric responses obtained from N@Gr/α-MnO₂/GCE with different modifier contents in phosphate buffer (pH 7.4) for H₂O₂ (applied potential : -0.4 V (vs. SCE)).

Fig. S4 TEM image of neuron-like shape of $N@Gr/\alpha-MnO_2$

Fig. S5 Amperometric responses of different modified electrodes in H_2O_2 (a) (a: GCE; b: α -MnO₂/GCE; c: N@Gr/GCE; d: N@Gr/ α -MnO₂/GCE)

Fig. S6 CV performed without (a) and with (b) the addition of H₂O₂ under exactly the same experimental conditions