Hyphenated Mass Spectrometry Methods for Enlarged Capacity Data Storage Systems based on Chemical Mixtures

Victor Flors^a, Raquel Cerveró^a, Cristopher Tinajero^b, Victor Sans^b and Cristian Vicent^{*c}

^aPlant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castelló, Spain

^bInstitute of Advanced Materials (INAM), Universitat Jaume I, Avda Sos Baynat s/n, Castelló 12071, Spain

^cServeis Centrals d'Instrumentació Científica Universitat Jaume I Av. Sos Baynat s/n, 12071 Castelló (Spain)

Contents

Table S1. Storage capacity per mixture (bits), defined as $C = \log_2 L$,¹ (C = capacity, M library size and L is the number of potential quantitation levels) for the most commonly used encoding / decoding methods.

Materials and methods

SI_1.1. Chemicals

- SI_1.2.Standard solutions SI_1.2.1 Binary encoding SI_1.2.1 Quaternary and octal encoding
- SI_1.3. Flow injection analysis and Ultra high-performance liquid chromatography coupled to ESI-MS
- *SI_1.4. Data processing*
- SI_1.5 Schematic representation of sample reconstitution from filter paper
- SI 1.6 Calibration details using quaternary and octal encoding schemes and ion suppression considerations
- SI_1.7 Python scripts and MATLAB procedure for message retrieval

Python scripts for retrieval of binary-encoded abstract information

Python scripts for retrieval of quaternary-encoded abstract information

Python scripts for retrieval of octal-encoded abstract information

Procedure of MATLAB for image encoding, storage, retrieval, and reconstitution

References

Table S1. Storage capacity per mixture (bits), defined as $C = \log_2 L$,¹ (C = capacity, M library size and L is the discrete concentration levels distinguishable for each species) for the most commonly used encoding / decoding methods.

Encoding / decoding analytical tool ^a	Storage capacity per mixture (bits);	Ref.
	$C = M \log_2 L$	
LDI-MS	30-40	23
SAMDI-MS	30-40	4
DESI-MS	20	5
GC-FID	24	6
fluorescence	7	7
Raman	24 ^b	8
NMR	8	6
NMR	70°	9
NMR	16	10
Cascade enzymatic reaction	5	11
FIA-MS	102	This work
LC-MS	10 ³ -10 ⁴	This work

^a Abbreviations LDI-MS, Laser Desorption Ionization MS; SAMDI-MS, Self-Assembled Monolayer Desorption and Ionization MS; GC-FID, Gas Chromatography Flame Ionization Detector; NMR, Nuclear Magnetic Resonance; FIA-MS, Flow Injection Analysis; LC-MS, Liquid Chromatography MS; ^b 8 (M) compounds at 8 (L) concentration levels; ^c 22 (M) compounds at 10 (L) concentration levels.

Materials and methods

SI_1.1. Chemicals

All flavonoids were purchased from TargetMol. Plant hormones as well as dicarboxylic acids were purchased from Sigma Aldrich. Deuterated plant hormones were prepared following literature procedures.¹² Formic acid, acetonitrile and methanol were all LC/MS grade and purchased from Scharlab. Deionized water was obtained from a Milli-Q system from Millipore (Bedford, MA, USA). A list of the 200 metabolites (full names, molecular formula, compound class as well as the monoisotopic m/z value of each [M - H]- ion) is provided in Table S2.

Table S2. List of the 200 metabolites (full names, molecular formula, compound class as well as the monoisotopic m/z value of each [M - H]- ion)

	compound	formula	[M-H]- ion	compound type
1	1-Aminocyclopropanecarboxylic acid	C4H7NO2	100,0399	R-CO2H
2	malonic acid	C3H3O4	101,9953	R-CO2H
3	serine	C3H7NO3	104,0348	R-CO2H
4	fumaric acid	C4H4O4	115,0031	R-CO2H
5	maleic acid	C4O4H4	115,0031	R-CO2H
6	succinic acid	C6H4O6	117,0188	R-CO2H
7	cysteine	C3H7NO2S	120,0119	R-CO2H
8	taurine	C2H7NO3S	124,0068	R-CO2H
9	2-pyrrolidone-5-carboxylic acid	C5H7NO3	128,0348	R-CO2H
10	pipecolic acid	C6H11NO2	128,0712	R-CO2H
11	aminolevulinic acid	C5H9NO3	130,0504	R-CO2H
12	aspartic acid	C4H7NO4	132,0297	R-CO2H
13	malic acid	C4H6O5	133,137	R-CO2H
14	homocysteine	C4H9NO2S	134,0276	R-CO2H
15	phenylalanine	C9H11NO2	134,0712	R-CO2H
16	4-aminobenzoic acid	C7H7NO2	136,0399	R-CO2H
17	ketoglutaric acid	C5H6O5	145,01	R-CO2H
18	adipic acid	C6H10O4	145,0501	R-CO2H
19	glutamic acid	C5H9NO4	146,0453	R-CO2H
20	methionine	C5H11NO2S	148,0432	R-CO2H
21	tartaric acid	C4H6O6	149,0086	R-CO2H
22	salicylhydroxamic acid	C7H7NO3	152,0348	R-CO2H
23	orotic acid	C5H4N2O4	155,0093	R-CO2H
24	2-aminoadipic acid	C6H11NO4	160,061	R-CO2H
25	3-dehidroshikimic acid	C7H8O5	171,0372	R-CO2H
26	shikimic acid	C7H10O5	173,045	R-CO2H
27	N-acetyl-L-aspartic acid	C6H9NO5	174,0402	R-CO2H
28	hippuric acid	C9H9NO3	178,0504	R-CO2H
29	galacturonic acid	C6H10O7	193,034	R-CO2H
30	gluconic acid	C6H12O7	195,0505	R-CO2H

31	Indole-3-butyric acid	C12H13NO2	202,0868	R-CO2H
32	Indole-3-pyruvic acid	C11H9NO3	202,0504	R-CO2H
33	dihydrojasmonic acid	C12H20O3	223,0606	R-CO2H
34	traumatic acid	C12H20O4	227,1283	R-CO2H
35	stearidonic acid	C18H28O2	275,2011	R-CO2H
36	linolenic acid	C18H30O2	277,2168	R-CO2H
37	linoleic acid	C18H32O2	279,2324	R-CO2H
38	sinapic acid	C11H12O5	223,0606	R-CO2H
39	gibbellerin A7	C19H22O5	329,1389	R-CO2H
40	gibellerin A4	C19H24O5	331,1545	R-CO2H
41	gibberellic acid	C19H22O6	345,1338	R-CO2H
42	folic acid	C19H19N7O6	440,1319	R-PO3H
43	adenosine-monophosphate (AMP)	C10H14N5O7P	346,0553	R-PO3H
44	adenosine-diphosphate (ADP)	C10H15N5O10P2	426,0216	R-PO3H
45	adenosine-triphosphate (ATP)	C10H16N5O13P3	505,9879	R-PO3H
46	nicotinamide adenine dinucleotide (NADH)	C21H28N7O14P2	663,1091	R-PO3H
47	flavin adenine dinucleotide (FAD)	C27H33N9O15P2	784,1493	plant hormones
48	salicylic acid	C7H6O3	137,0240	plant hormones
49	salicylic acid-d5	C7HD5O3	142,0547	plant hormones
50	cinnamic acid	C9H7O2	147,0450	plant hormones
51	indole acetic acid	C10H9NO2	174,0550	plant hormones
52	caffeic Acid	C9H8O4	179,0344	plant hormones
53	ferulic Acid	C10H10O4	193,0500	plant hormones
54	jasmonic Acid	C12H18O3	209,1178	plant hormones
55	abscisic Acid	C15H20O4	263,1280	plant hormones
56	abscisic acid-d6	C15H14O4D6	269,1654	plant hormones
57	12-oxo-phytodienoic acid (OPDA)	C18H28O3	291,196	plant hormones
58	glucosyl salicylate	C13H16O8	299,0767	plant hormones
59	salicylic glucosyl ester	C13H16O8	299,0767	plant hormones
60	jasmonate-isoleucine	C18H29NO4	322,2018	plant hormones
61	chlorogenic acid	C16H18O9	353,087	plant hormones
62	abscisic acid D-glucopyranosyl ester	C21H30O9	425,181	flavonoids
63	vanilin	C8H8O3	151,0395	flavonoids
64	5,7-dihydroxychromone	C9H6O4	177,0188	flavonoids
65	scopoletin	C10H8O4	191,0344	flavonoids
66	4-hydroxychalcone	C15H12O2	223,0759	flavonoids
67	3-hydroxyflavone	C15H10O3	237,0552	flavonoids
68	6-hydroxyflavone	C15H10O3	237,0552	flavonoids
69	Chirysin	C15H10O4	253,0501	flavonoids
70	7,8-dihydroxyflavone	C15H10O4	253,0501	flavonoids
71	daidzein	C15H10O4	253,0501	flavonoids
72	liquiritigenin	C15H12O4	255,0657	flavonoids
73	pinocembrin	C15H12O4	255,0657	flavonoids
74	formononetin	C16H12O4	267,0657	flavonoids
75	Tectochrysin	C16H12O4	267,0657	flavonoids

76	galangin	C15H10O5	269,045	flavonoids
77	genistein	C15H10O5	269,045	flavonoids
78	baicalein	C15H10O5	269,045	flavonoids
79	Apigenin	C15H10O5	269,045	flavonoids
80	alpinetin	C16H14O4	269,0814	flavonoids
81	naringenin	C15H12O5	271,0606	flavonoids
82	4',7-dimethoxyisoflavone	C17H14O4	281,0814	flavonoids
83	5,7-dimethoxiflavone	C17H14O4	281,0814	flavonoids
84	biochanin A	C16H12O5	283,0606	flavonoids
85	calycosin	C16H12O5	283,0606	flavonoids
86	oroxylin A	C16H12O5	283,0606	flavonoids
87	genkwanin	C16H12O5	283,0606	flavonoids
88	galangin-3-methylether	C16H12O5	284,0685	flavonoids
89	kaempferol	C15H10O6	285,0399	flavonoids
90	scutellarein	C15H10O6	285,0399	flavonoids
91	Isosakuranetin	C16H14O5	285,0763	flavonoids
92	brazilin	C16H14O5	285,0763	flavonoids
93	eriodictyol	C15H12O6	287,0556	flavonoids
94	epicatechin	C15H14O6	289,0712	flavonoids
95	5-hydroxy-7,8-dimethoxyflavone	C17H14O5	297,0763	flavonoids
96	mosloflavone	C17H14O5	297,0763	flavonoids
97	tectorigenin	C16H12O6	299,0556	flavonoids
98	diosmetin	C16H12O6	299,0556	flavonoids
99	farrerol	C17H16O5	299,0919	flavonoids
100	quercetin	C15H10O7	301,0348	flavonoids
101	tricetin	C15H10O7	301,0348	flavonoids
102	herbacetin	C15H10O7	301,0712	flavonoids
103	hesperetin	C16H14O6	301,0712	flavonoids
104	taxifolin	C15H12O7	303,0505	flavonoids
105	capsaicin	C18H27NO3	304,1913	flavonoids
106	(+)-gallocatechin	C15H14O7	305,0661	flavonoids
107	cimifugin	C16H18O6	305,1025	flavonoids
108	Isorhamnetin	C16H12O7	315,0505	flavonoids
109	myricetin	C15H10O8	317,0297	flavonoids
110	ampelopsin	C15H12O8	319,0454	flavonoids
111	dihydromyricetin	C15H12O8	319,0454	flavonoids
112	neobavaisoflavone	C20H18O4	321,1127	flavonoids
113	glabridin	C20H20O4	323,1283	flavonoids
114	bavachin	C20H20O5	323,1283	flavonoids
115	isobavachin	C20H20O4	323,1283	flavonoids
116	jaceosidin	C17H14O7	329,0661	flavonoids
117	bavachinin	C21H22O4	337,144	flavonoids
118	eupatilin	C18H16O7	343,0818	flavonoids
119	lysionotin	C18H16O7	343,0818	flavonoids
120	isoxanthohumol	C21H22O5	353,1389	flavonoids

121	irigenin	C18H16O8	359,0767	flavonoids
122	Icaritin	C21H20O6	367,1182	flavonoids
123	isosinensetin	C20H20O7	371,1131	flavonoids
124	tangeretin	C20H20O7	371,1131	flavonoids
125	Vitexicarpin	C19H18O8	373,0923	flavonoids
126	chrysosptertin B	C19H18O8	373,0923	flavonoids
127	briboflavin	C17H20N4O6	375,01305	flavonoids
128	Irisflorentin	C20H18O8	385,0923	flavonoids
129	medroxyprogesterone acetate	C24H34O4	385,2379	flavonoids
130	5-demethylnobiletin	C20H20O8	387,108	flavonoids
131	corylifol A	C25H26O4	389,1753	flavonoids
132	morusin	C25H24O6	419,1495	flavonoids
133	ononin	C22H22O9	429,1186	flavonoids
134	isovitexin	C21H20O10	431,0978	flavonoids
135	oroxin A	C21H20O10	431,0978	flavonoids
136	vitexin	C21H20O10	431,0978	flavonoids
137	Avicularin	C20H18O11	433,0771	flavonoids
138	guaijaverin	C20H18O11	433,0771	flavonoids
139	engeletin	C21H22O10	433,1135	flavonoids
140	casanthranol	C21H22O10	433,1135	flavonoids
141	Sec-O-Glucosylhamaudol	C21H26O10	437,1448	flavonoids
142	(-)-epicatechin gallate	C22H18O10	441,0822	flavonoids
143	apigenin-7-glucuronide	C21H18O11	445,0771	flavonoids
144	baicalin	C21H18O11	445,0771	flavonoids
145	calycosin-7-O-beta-D-glucoside	C22H22O10	445,1135	flavonoids
146	Orientin	C21H20O11	447,0927	flavonoids
147	Isoorientin	C21H20O11	447,0927	flavonoids
148	astragalin	C21H20O11	447,0927	flavonoids
149	astilbin	C21H22O11	449,1084	flavonoids
150	gallocatechin gallate	C22H18O11	457,0771	flavonoids
151	Oroxylin A 7-O-beta-D-glucuronide	C22H20O11	459,0927	flavonoids
152	wogonoside	C22H20O11	459,0927	flavonoids
153	homoplantaginin	C22H22O11	461,1084	flavonoids
154	tectoridin	C22H22O11	461,1084	flavonoids
155	Diosmetin-7-O-beta-D-glucopyranoside	C22H22O11	461,1084	flavonoids
156	Luteolin-7-glucuronide	C21H18O12	461,072	flavonoids
157	isoquercitrin	C21H20O12	463,0877	flavonoids
150	7,2'-dihydroxy-3',4'-dimethoxyisoflavane-7-O-	C23U29C40	162 1604	flavonoida
150		C23E20010	403,1004	flavonoida
160	pianagusiue	021022012	400,1000	flavonoida
161		02202012	411,1033	flavonoida
101		0201122010	401,1135	flovonoido
102	syiimarin	025H22U10	481,1135	
163	baohuoside I	C2/H30O10	513,1761	
164	amentoflavone	C30H18O10	537,0822	tlavonoids

165	mirificin	C26H28O13	547,1452	flavonoids
166	puerarin 6-O-xyloside	C26H28O13	547,1452	flavonoids
167	schaftoside	C26H28O14	563,1401	flavonoids
168	Procyanidin B2	C30H26O12	577,1346	flavonoids
169	kaempferitrin	C27H30O14	577,1557	flavonoids
170	rhoifolin	C27H30O14	577,1557	flavonoids
171	Vitexin-2"-O-rhamnoside	C27H30O14	577,1557	flavonoids
172	leucoside	C26H28O15	579,135	flavonoids
173	naringin	C27H32O14	579,1714	flavonoids
174	narirutin	C27H32O14	579,1714	flavonoids
175	linarin	C28H32O14	591,1714	flavonoids
176	Tiliroside	C30H26O13	593,1295	flavonoids
177	kaempferol 3-glucorhamnoside	C27H30O15	593,1506	flavonoids
178	Oroxin B	C27H30O15	593,1506	flavonoids
179	nicotiflorin	C27H30O15	593,1506	flavonoids
180	didymin	C28H34O14	593,187	flavonoids
181	eriocitrin	C27H32O15	595,1663	flavonoids
182	spinosin	C28H32O15	607,1663	flavonoids
183	rutin	C27H30O16	609,1456	flavonoids
184	glucosylvitexin	C27H30O16	609,1456	flavonoids
185	neohesperidin	C28H34O15	609,1819	flavonoids
186	neohesperidin dihydrochalcone	C28H36O15	611,1976	flavonoids
187	2-O-galloylhyperin	C28H24O16	615,0986	flavonoids
188	Isorhamnetin 3-O-neohesperidin	C28H32O16	623,1612	flavonoids
189	narcissoside	C28H32O16	623,1612	flavonoids
190	quercetin-3-O-sophoroside	C27H30O17	625,1405	flavonoids
191	Icariin	C33H40O15	675,2289	flavonoids
192	kuwanon G	C40H36O11	691,2179	flavonoids
193	theaflavin-3'-gallate	C36H28O16	715,1299	flavonoids
194	ligustroflavone	C33H40O18	723,2136	flavonoids
195	vaccarin	C32H38O19	725,1929	flavonoids
196	Troxerutin	C33H42O19	741,2242	flavonoids
197	typhaneoside	C34H42O20	769,2191	flavonoids
198	epimedin B	C38H48O19	807,2712	flavonoids
199	epimedin C	C39H50O19	821,2868	flavonoids
200	epimedin A	C39H50O20	837,2817	flavonoids

SI_1.2. Standard solutions

Stock solutions of flavonoids, plant hormones and carboxylic acids were prepared by dissolving them in methanol to afford stock solutions at concentrations of 500 μ g/mL (ppm, parts-per-million). These solutions were stored refrigerated at -80 °C and in the absence of moisture or antioxidants due to the well-known thermal instability of flavonoids.^{13,14} We also avoid the presence of oxygen that may reduce the long term

stability of nucleotides and some of the carboxylic acids. Under these conditions, these 500 ppm solutions are stable for more than two years.

 $SI_{1.2.1}$ Binary encoding: if a metabolite is meant to be included, we manually transfer a 5 µL aliquot from the stock solution (at 500 µg/mL) to the vial. If it is meant to be excluded, no transfer is performed. Each chemical mixture was prepared at 2.5 µg/mL (total volume 1 mL) and it was further brought to the concentration compatible (50-500 ng / mL) with FIA-MS and LC-MS methods by simple dilution. Such initial 2.5 ppm solutions were stored refrigerated and in the absence of moisture, antioxidants and the presence of oxygen. During the normal course of our experiments, such 2.5 ppm intermediate solutions were used satisfactorily over 9 months to prepare our encoding chemical mixtures in the 50-500 ng / mL (ppb) range.

 $SI_{1.2.2.}$ *Quaternary and octal encoding*: for this purpose, calibration curves were built covering two orders of magnitudes from 10 to 1250 ng/mL from successive dilution from the 500 µg/mL stock solution. Of the 25 encoding flavonoids. Hence, aliquots of the 25 flavonoids were combined into a single high-concentration standard mixture (1250 ppb), from which a series of dilution points were prepared (10 - 1250 ng/mL). For quaternary encoding, analyte concentrations (**quaternary code**) were 100 (1), 500 (2) and 1250 (3) (ng/ mL; ppb). For octal encoding, denser analyte concentrations (**octal code**) were used 50 (1), 125 (2), 250 (3), 500 (4), 750 (5), 1000 (6) and 1500 (7) (ng/ mL; ppb). These values can be user-customized depending on the relative ionization efficiencies of the analytes of interest as well as the inherent sensitivity of the hyphenated MS platform. As shown in the section " $SI_{1.6}$ Calibration details using quaternary and octal encoding schemes and ion suppression considerations" LC-MS analysis showed no significant ion suppression effect when quantifying a reduced set of 25 flavonoids. Decoding of data encoded in quaternary and octal formats was deemed satisfactory. However, while ion suppression was observed in FIA-MS analysis, the quaternary encoding scheme itself helped mitigate this issue by employing concentration values that were spaced half an order of magnitude apart (for example, codes 1 and 2 corresponded to 100 and 500 ppb, respectively).

SI_1.3. Flow injection analysis and Ultra high-performance liquid chromatography coupled to ESI-MS

A Waters Acquity I-Class UPLC system (Waters Corp., Milford, MA, USA) coupled to a Synapt HDMS mass spectrometer using an Electrospray Ionization (ESI) interface was used in both FIA-MS and LC-MS methods. The TOF was operated in the V resolution mode (resolution was ca. 25000 FWHM (m/z 554)) in the negative ionization mode. The ESI capillary voltage was 1.5 kV, using a cone voltage of 25 V. The source temperature was set to 120 °C, and the desolvation temperature at 650 °C. Nitrogen was used as the desolvation gas at 1200 L/h and cone gas at 250 L/h. Calibration was performed using the sodium formate solutions using the Waters Intelllistart routine according the manufacturer's to

recommendations. Leucine enkephalin (200 μ g/L in water: acetonitrile 1:1 containing 0.01% formic acid) was used for continuous mass correction during all FIA or LC chromatographic runs. A full scan function was acquired in each injection in the range of *m*/*z* 50 - 1000 with a scan time of 0.2 s.

Liquid chromatography coupled to Mass Spectrometry (LC-MS): Chromatographic separations were performed at 40 °C on a reverse phase analytical column Acquity BEH C18 1.7 µm, 2.1×50 mm (Waters, Milford, MA). Ultra-performance liquid chromatography (UPLC) uses small-diameter particles (typically 1.7µm) in the stationary phase and short columns, which lead to narrower LC peaks (5-10 s wide) and improved chromatographic separations, with short analysis times. The mobile phase consisted of acetonitrile (B) and 0.1 % formic acid in water (A) delivered at a flow rate of 0.3 mL/min and changing as follows: 10% B at 0 min; 95% B at 0 minutes linearly increased until 8 minutes; then the system was set to its initial conditions in 0.1 min and was conditioned until 8.5 minutes before the next injection. Flow Injection Analysis coupled to Mass Spectrometry (FIA-MS): FIA-MS methods employ the same instrumental hardware to that described for LC-MS and simply use autosamplers and injectors to introduce samples into the mass spectrometer. The analyte peak shape in a FIA-MS is affected by the specific system configuration such as transfer tubing dimensions as well as injection volume and flow rate. Moreover, metabolite peaks must be defined by enough data points the for accurate quantitation, and this may not be achievable if the peak widths are too small.¹⁵ Optimal parameters should balance analyte sensitivity while maintaining adequate peak width for data collection. The analysis was carried at a flow rate of 0.3 mL/min and 1 µL of the sample was injected into the system, transferred through a medium-size peek tube of 0.13 mm of diameter. Scan time acquisitions were 0.2 seconds. The total run time of the analysis was 35 seconds / injection and peak widths were ca. 5 seconds which gave satisfactory quali- and quantitation identification of our chemical mixtures. For Ion mobility experiments, the Synapt HDMS mass spectrometer was used. Nitrogen was used as the drift gas, with an IMS wave velocity of 1050 m/s and wave height of 30 V. For complementary experiments using a FIA-MS and LC-MS coupled to a low resolution ESI mass spectrometry (triple quadrupole), an Acquity liquid chromatography system (Waters Corp., Milford, MA, USA) interfaced to a triple quadrupole mass spectrometer Xevo TQS equipped with an orthogonal Z-Spray electrospray ionization interface (ESI) (Waters Corp, Manchester, UK) was used for sample analysis. The same FIA-MS method as well a as UPLC separation was performed using the same inlet methods and chromatographic column and maintained at 40 •C. The ESI capillary voltage was 1.5 kV, using a cone voltage of 25 V. The source temperature was set to 120 °C, and the desolvation temperature at 650 °C. Nitrogen was used as the desolvation gas at 1200 L/h and cone gas at 250 L/h. Calibration was performed using the sodium iodide solutions using the Waters Intelllistart routine according to the manufacturer's recommendations. A full scan function was acquired in each injection in the range of m/z 50-1000 with a scan time of 0.5 s.

SI_1.4. Data processing

Several data processing strategies were used for data visualization or retrieval of the encoded message: Chrotool: Chrotool is an application embedded in Masslynx 4.2 intended for automatic chromatogram display. In the present work, it was used to group of 8 metabolites (byte) according to the encoding scheme of each message where the extracted ion chromatograms (XICs') of each byte can be visualized with a single "one-click" operation. TargetLynx: Target screening was performed by filtering data based on observed retention time, accurate-mass matching experimental data with the previously created empirical mass spectra library of the 200 metabolites. Data were processed using MassLynx 4.2 software and evaluated both qualior quantitatively with the TargetLynx application (Waters Corp, Manchester, UK). A schematic workflow combining Targetlynx is shown in Figure S1. To read the information stored in the vials, different python scripts for automatic data processing were written. These scripts search for the peak areas of all of the metabolites used for encoding in the report output file exported from Targetlynx. If the particular m/z value is found with user-defined threshold area, it is designated by "1", or if not, by "0" bit and all bites that are then concatenated and the ASCII code retrieved. Another python scripts were used for decoding messages encoded in quaternary or octal code, respectively where the threshold ranges for assigning the 0-3 or 0-7 values user-defined. were also

Figure S1. Schematic workflow for automatic data processing

- 1) Encoding the Information: The abstract information is first converted into a binary (or quaternary/octal) sequence.
- 2) Creation of the Encoding File: An Excel file (code.xls) is generated by selecting metabolites from a pre-established, home-built database comprising a 200-metabolite library. This file contains a structured list of metabolites representing the encoded message, where each analyte corresponds to a specific bit in a predefined order. The format of this file, shown as an inset, includes columns detailing compound names, molecular formulas, m/z values, and their assigned binary (0 or 1) codes.
- 3) **Sample Preparation:** Aliquots of the selected analytes are transferred to individual vials or multiple vials if spatial ordering is applied.
- 4) **Data Acquisition:** The samples are analysed using LC-MS or FIA-MS in full-scan mode, generating *raw* data files containing LC or FIA chromatograms.
- 5) **Data Processing:** The *raw* data files are processed using TargetLynx, where user-defined parameters can be adjusted to optimize integration, calibration, and quantification. TargetLynx produces an output file (**decoded_output.txt**), which contains qualitative information on the presence or absence of analytes based on their integrated peak areas. A sample of this file format, highlighted in orange, is shown as an inset, displaying compound names, sample names, retention times, and peak areas. For quantitative purposes, calibration curves are generated using a mixture of all target analytes at high concentrations,

followed by serial dilutions. After peak area Integration of each analyte, TargetLynx constructs calibration curves for sample components, using linear regression to establish a relationship between concentration and response. Unknown samples are then quantified using the fitted calibration curves. The final summary output is provided as a (**decoded_output.txt**) file, which serves as input for the Python-based retrieval of the original encoded message.

6) Automated Information Extraction and Decoding: A Python-based script is employed to extract encoded information. The script reads the compound names from code.xls and searches for their corresponding peak areas in decoded_output.txt. If the analyte is present (determined by its area value exceeding a predefined threshold), it is assigned a binary value of 1; if absent, it is assigned a binary value of 0. The resulting concatenated binary sequence is then used to reconstruct the original message.

Figure S2. Workflow for reconstituting messages encoded in chemical mixtures adsorbed on filter paper; **a**) a 2.5 ppm solution of a chemical mixture encoding 152 bits (*CODE1_LCMS*) was prepared, and 5 μ L of this solution was deposited onto a small section of filter paper (*ca.* 10 mm²); **b**) **and c**) Images of the filter paper after the application of the 5 μ L chemical mixture, left to dry in an open vial; **d**) the dried filter paper was subsequently suspended in 200 μ L of methanol within the same vial to facilitate analyte extraction; **e**) the resulting solution was filtered using a 0.22 μ m PTFE filter and transferred into a final vial for analysis; **f**) the final vial was placed on the sample plate, prepared for injection and decoding via LC-MS.

SI_1.6 Calibration details using quaternary and octal encoding schemes and ion suppression considerations

The consequences of matrix effects in ESI mass spectrometry analysis are a major issue of concern especially for quantitative purposes. We have mentioned along the text that ion suppression is present during qualitative FIA-MS analysis (used to decode binary-encoded information) due to the coelution of all encoding analytes; this indeed limited the use of large data sets to 80-100 analytes. Our quantitative method relied on the quantitation of each component of a mixture of 25 flavonoids to yield the associated quaternary or octal representation. Accuracy must be sufficient for distinguishing up to four or eight concentration levels which span over two orders of magnitude. Explanations and additional experiments aimed at identifying and quantifying ion suppression as well as accuracy of our quantitative method are given below.

As ion suppression varies by compound family, we examined its impact on three representative analytes: myricetin (flavone family), didymin (conjugated flavonoid family), and abscisic acid (plant hormone family). Comparison of matrix and solvent calibrations is a simple, yet effective technique for quantifying the effect of ion suppression in a MS method.¹⁶ Calibration curves for each of the three analytes were constructed both in neat solvent and in a matrix comprising 25 flavonoids, mimicking real sample composition, at concentrations of 75 and 750 ppb. In LC-MS analysis, the presence of this flavonoid matrix yielded calibration curves that closely overlapped with those obtained in solvent, indicating negligible ion suppression effects. In contrast, FIA-MS exhibited a higher potential for ion suppression due to the simultaneous analysis of multiple flavonoids and the use of short, non-resolving chromatographic runs. This matrix effect was evident in the reduced slopes of calibration curves in the presence of the flavonoid matrix compared to those in neat solvent (see Figure S3 for myricetin).

Figure S3. Calibration curves of myricetin in neat ($H_2O:CH_3CN$ 9:1) solvent (upper trace) and in the presence of matrix at 75 ppb (medium trace) and 750 ppb (lower trace). The slope ratio between the calibration curves at 75 to 750 ppb is 15 %.

Similarly, didymin calibration curves (see figure S4) showed slope flattening when transitioning from neat solvent to matrix at both low and high concentrations.

Figure S4. Calibration curves of didymin in a neat solvent ($H_2O:CH_3CN 9:1$) shown in the upper trace, and in the presence of matrix at concentrations of 75 ppb (medium trace) and 750 ppb (lower trace). The slope ratio between the calibration curves at 75 ppb and 750 ppb is 45%.

Once ion suppression was identified in FIA-MS decoding, we explored mitigation strategies. Firstly, we considered matrix-matched calibration, which requires calibration curves on each separated flavonoid in a matrix resembling real samples. However, due to variations in flavonoid composition and concentration across samples, achieving an appropriate blank matrix is not trivial and preparing such a large number of calibration curves is impractical. While matrix effects can differ across sample types, variations within similar matrices, (such as blood or urine from different test subjects), tend to be minor. In our case, this variation was estimated from Figures 1 and 2, showing response differences for myricetin and didymin of 15 - 45% across matrices ranging from 75 to 750 ppb. This suggests that accuracy and precision are not highly sensitive to matrix differences across calibration and unknown samples. Hence, we adopted a simplified calibration approach by combining aliquots of the 25 flavonoids into a single high-concentration standard mixture (1250 ppb), from which a series of dilution points were prepared (15 - 1250 ng/mL). This avoided extensive matrix-matched calibration on separated flavonoids while still accounting for interfering flavonoid components to identify any matrix effect. By using this approach, higher concentration calibration points of some flavonoids displayed suppressed signals whereas dilution to prepare the lower concentration calibration points presented improved ionization efficiency by reducing competing analytes.

Despite ion suppression was evident, the quaternary encoding scheme itself mitigated ion suppression by using concentration values separated by half an order of magnitude (e.g., codes 1 and 2 correspond to 100 and 500 ppb, respectively). Hence, method validation was successful, as quaternary-encoded messages were accurately quantified and decoded. However, repeated attempts to distinguish eight concentration levels by FIA-MS-based quantitation showed an increase in classification errors, thus reducing the overall readout accuracy. Therefore, decoding of octal encoding schemes was restricted to LC-MS as decoding method.

Secondly, another method aimed at achieving greater accuracy and precision involved the use of an internal standard. This approach relies on maintaining a consistent response ratio between the analyte of interest and its corresponding internal standard, despite potential variations in absolute analyte responses due to matrix effects. In the context of this study, employing internal standards could significantly expand the range of distinguishable quantitation levels, particularly beneficial for higher (decimal, hexadecimal) encoding schemes. Specifically concerning flavonoids, the availability of isotopically labelled derivatives for use as internal standards is limited. Nevertheless, experiments were conducted using d⁶-abscisic acid as an internal standard for its non-deuterated counterpart. The effectiveness of ion suppression compensation using an internal standard was evaluated by comparing calibration curves of the analyte in solvent versus in matrix, both in the presence of a fixed amount of internal standard. This evaluation is illustrated in figures S5 a), b), and c), which depict calibration curves of abscisic acid under solvent conditions (a), in a mixture of 25 flavonoids at 75 ppb (b), and at 750 ppb (c), and a matrix mixture at 750 ppb in the presence of a fixed (250 ppb) amount of d⁶-abscisic acid.

Figure S5. Calibration curves of abscisic acid in neat ($H_2O:CH_3CN$ 9:1) solvent (a) and in the presence of matrix at 75 ppb (b), 750 ppb (c) and this later in the presence of d6-absisic acid as internal standard (d).

Figures S5 a) and S5 d) show significant overlap in calibration curve slopes, indicating that internal standard correction effectively minimizes ion suppression. Furthermore, we have conducted a preliminary investigation into the feasibility of extending the number of distinguishable quantitation levels by utilizing five plant hormones for which isotopically labelled standards are available: abscisic acid, salicylic acid, jasmonic acid, cinnamic acid, and ferulic acid. Given the three-order dynamic range of modern MS instruments, preliminary results indicated that both LC-MS and FIA-MS combined with internal standards enabled the accurate distinction of up to 32 levels. This preliminary finding is currently being further explored in our laboratory within the framework of high-order encoding schemes.

Encoded message and decoded method: quaternary encoding scheme of an image (logo UJI) using FIA-MS or LC-MS as decoding methods. The list of metabolites used to encode this message is given in Table S3. Analyte concentrations were 100, 500 and 1250 ppb to depict the 1, 2 and 3 states.

Table S3

Text image_UJI

Set of 25 metabolites used for text encoding

			[M-H]-										
	Compound	formula	ion (m/z)	vial1	vial2	vial3	vial4	vial5	vial6	vial7	vial8	vial9	vial10
1	6-hydroxyflavone	C15H10O3	237,0552	0	0	0	0	0	0	0	0	0	0
2	guaijaverin	C20H18O11	433,0771	0	0	0	0	0	0	0	0	0	0
3	wogonoside	C22H20O11	459,0927	0	0	0	0	0	0	0	0	0	0
4	Orientin	C21H20O11	447,0927	0	0	0	0	0	0	0	1	1	0
5	5,7-dihydroxychromone	C9H6O4	177,0188	0	0	1	1	1	1	1	1	1	0
6	4-hydroxychalcone	C15H12O2	223,0759	0	0	1	1	1	1	1	1	1	0
7	corylifol A	C25H26O4	389,1753	0	0	1	1	1	1	1	1	1	0
8	formononetin	C16H12O4	267,0657	0	0	0	0	0	0	0	1	1	0
9	baicalein	C15H10O5	269,0450	0	0	0	0	0	0	0	1	1	0
10	naringenin	C15H12O5	271,0606	0	0	1	1	1	1	1	1	1	0
11	acacetin	C16H12O5	283,0606	0	0	1	1	1	1	1	1	1	0
12	scutellarein	C15H10O6	285,0399	0	0	1	1	1	1	1	1	1	0
13	morusin	C25H24O6	418,1432	0	0	0	0	0	0	0	0	0	0
14	eriodictyol	C15H12O6	287,0556	0	0	0	0	0	0	0	2	2	0
15	epicatechin	C15H14O6	289,0712	0	0	0	0	0	0	0	2	2	0
16	tectorigenin	C16H12O6	299,0556	0	0	0	0	0	0	0	2	2	0
17	eupatilin	C18H16O7	343,0818	0	0	2	2	2	2	2	2	2	0
18	taxifolin	C15H12O7	303,0505	0	0	2	2	2	2	2	2	2	0
19	neobavaisoflavone	C20H18O4	321,1127	0	0	2	2	2	2	2	2	2	0
20	bavachin	C21H22O12	465,1033	0	0	0	0	0	0	0	0	0	0
21	mirificin	C26H28O13	547,1452	0	0	3	3	3	3	3	3	3	0
22	amentoflavone	C30H18O10	537,0822	0	0	3	3	3	3	3	3	3	0
23	silibinin	C25H22O10	481,1135	0	0	3	3	3	3	3	3	3	0
24	jaceosidin	C21H22O4	337,1440	0	0	0	0	0	0	0	0	0	0
25	rhoifolin	C27H30O14	577,1557	0	0	0	0	0	0	0	0	0	0

Quantify compound summary report for the image (logo UJI) using a quaternary encoding scheme and LC-MS as decoding method

Quantify Compound Summary Report Compound 1: 6-hydroxiflavone

Figure S6. Compound summary report, illustrative trace and calibration curve and residuals of 6-hydroxiflavone.

Quantify Compound Summary Report Compound 2: guayjaverin

	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCMS_001	mix_1			7.000	
2	2	synapt_cvb_quat_LCMS_002	mix_2			15.000	
3	3	synapt_cvb_quat_LCMS_003	mix_3	1.97	48.024	31.000	40.84
4	4	synapt_cvb_quat_LCMS_004	mix_4	1.98	182.019	62.000	56.01
5	5	synapt_cvb_quat_LCMS_005	mix_5	1.98	555.197	125.000	98.27
6	6	synapt_cvb_quat_LCMS_006	mix_6	1.98	1684.148	250.000	226.12
7	7	synapt_cvb_quat_LCMS_007	mix_7	1.98	4072.199	500.000	496.55
8	8	synapt_cvb_quat_LCMS_008	mix_8	2.00	6441.045	750.000	764.80
9	9	synapt_cvb_quat_LCMS_009	vial 1 quaterna	ry .			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quaterna	ry .			
11	11	synapt_cvb_quat_LCMS_011	vial 3 quaterna	ry .			
12	12	synapt_cvb_quat_LCMS_012	vial 4 quaterna	ry .			
13	13	synapt_cvb_quat_LCMS_013	vial 5 quaterna	ry .			
14	14	synapt_cvb_quat_LCMS_014	vial 6 quaterna	ry .			
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry .			
16	16	synapt_cvb_quat_LCMS_016	vial 8 quaterna	ry .			
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaterna	ry .			
18	18	synapt_cvb_quat_LCMS_018	vial 10 quaterna	ary			
mix_6	guayjaverin 1.98 1684.15	F1:TOF MS,ES- 433.0771 2.608e+004	Compor Correlat Calibrati Respon Curve ty	und name: gu ion coefficien ion curve: 8.8 se type: Exter pe: Linear, O	uayjaverin It: r = 0.996952, r^2 = 3058 * x + -312.615 mal Std, Area rigin: Include, Weight	0.993913 ing: Null, Axis trar	is: None
- - %-			20. Sesignation B -20.		×		ـــــــــــــــــــــــــــــــــــــ
0	1.75 2.00 2.	, , , , , , , , , , , , , , , , , , , 	500 ع د د د د د د د د د د د د د د د د د د د	0 -0 -0 100	200 300 40	× 10 500 600	ېروپې pg on column 700

Figure S7. Compound summary report, illustrative trace and calibration curve and residuals of guayjaverin.

Quantify Co	ompound Summary	Report					
Compound	3: wogonoside						
	#	Name	Sample Text	RT	Δrea	Std Conc	ng on column
1	1	synapt cyb quat LCMS 001	mix 1		Area	7.000	pg on column
2	2	synapt cyb guat LCMS 002	mix 2			15.000	
3	3	synapt_cvb_quat_LCMS_003	mix 3	3.10	45.353	31.000	45.16
4	4	synapt cvb guat LCMS 004	mix 4	3.11	115.336	62.000	57.58
5	5	synapt cyb guat LCMS 005	mix 5	3.10	333.446	125.000	96.29
6	6	synapt cyb quat LCMS 006	mix 6	3.10	1082,496	250.000	229.24
7	7	synapt cyb quat LCMS 007	mix 7	3.10	2458.072	500.000	473.37
8	8	synapt cyb guat LCMS 008	mix 8	3.12	4181.436	750.000	779.24
9	9	synapt cvb quat LCMS 009	vial 1 guaterna	ry			
10	10	synapt cvb quat LCMS 010	vial 2 guaterna	ry			
11	11	synapt cvb quat LCMS 011	vial 3 quaterna	ry			
12	12	synapt_cvb_quat_LCMS_012	vial 4 quaterna	ry			
13	13	synapt_cvb_quat_LCMS_013	vial 5 quaterna	ry			
14	14	synapt_cvb_quat_LCMS_014	vial 6 quaterna	ry			
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry			
16	16	synapt_cvb_quat_LCMS_016	vial 8 quaterna	ry			
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaterna	ry			
18	18	synapt_cvb_quat_LCMS_018	vial 10 quatern	ary			
mix 6	wagapasida	F1:TOF MS.ES-	Compound name:	wogonoside			
-	3 10	459.0927	Correlation coeffici	ent: r = 0.9953	371, r^2 = 0.990764		
	1082.50	1.903e+004	Calibration curve: 5	.63443 * x + -	209.115		
¹⁰⁰ 7	Λ		Response type: Ex	ternal Std, Are	a		
-			Curve type: Linear,	Origin: Include	e, Weighting: Null, A	<pre>ds trans: None</pre>	
1			– 400.ª ×				
1			20.0				
-			0.0		X	X	
0/			200 ×	×	×		
~			-0.0 humburd			mituri bi	y on column
1							
-							
			8			X	
			a 2500-			-	
1			e e	X			
0-4		min		<u></u>		pi pining pi	g on column
2.75	3.00 3.25	3.50 3.75	-0 10	0 200 3	300 400 500	600 700	

Figure S8. Compound summary report, illustrative trace and calibration curve and residuals of wogonoside.

Compou	nd 4: orientin						
	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCMS_001	mix_1			7.000	
2	2	synapt_cvb_quat_LCMS_002	mix_2			15.000	
3	3	synapt_cvb_quat_LCMS_003	mix_3	1.54	47.154	31.000	39.54
4	4	synapt_cvb_quat_LCMS_004	mix_4	1.55	128.990	62.000	54.53
5	5	synapt_cvb_quat_LCMS_005	mix_5	1.55	388.985	125.000	102.16
6	6	synapt_cvb_quat_LCMS_006	mix_6	1.55	1100.225	250.000	232.46
7	7	synapt_cvb_quat_LCMS_007	mix_7	1.55	2535.738	500.000	495.45
8	8	synapt_cvb_quat_LCMS_008	mix_8	1.56	3995.865	750.000	762.95
9	9	synapt_cvb_quat_LCMS_009	vial 1 quaterna	ry			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quaterna	ry			
11	11	synapt_cvb_quat_LCMS_011	vial 3 quaterna	ry			
12	12	synapt_cvb_quat_LCMS_012	vial 4 quaterna	ry			
13	13	synapt_cvb_quat_LCMS_013	vial 5 quaterna	ry			
14	14	synapt_cvb_quat_LCMS_014	vial 6 quaterna	ry			
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry			
16	16	synapt_cvb_quat_LCMS_016	vial 8 quaterna	ry			
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaterna	ry			
18	18	synapt_cvb_quat_LCMS_018	vial 10 quatern	ary			
mix 6	orientin	F1:TOF MS,ES-	Comp	ound name: o	orientin		
_	1.55	447.0927	Corre	lation coefficie	ent: r = 0.997790, r^2	= 0.995585	
	1100.22	1.977e+004	Calibr	ation curve: 5	.45848 * x + -168.673	3	
1007	٨		Resp	onse type:Ext	ernal Std, Area		
			Curve	type: Linear, (Origin: Include, Weig	hting: Null, Axis tra	ans: None
]				25.0-1 ×			
			sidu	00			×
1			ě	-0.0	×	×	~
%-			_	hund	. X.,,		יייין pg on colum
1			n	-1			X
-			Š, 2	500			
			od 2		Server and the server		
			Šě	A	×		
0-4	1.400 4.000	- 1 800 min	_	- 1	0 200 300	400 500 60	ng on colum
	1.400 1.600	1.000		-0 10	0 200 300 4	+00 000 000	0 700

Quantify Compound Summary Report

Figure S9. Compound summary report, illustrative trace and calibration curve and residuals of orientin.

Figure S10. Compound summary report, illustrative trace and calibration curve and residuals of 5,7dihydroxichromone.

Quantify Compound Summary Report Compound 6: 4-hydroxychalcone

1	# 1	Name synapt_cvb_quat_	LCMS_001	Sample Text mix_1	RT	Area	Std. Conc 7.000	pg on column
2	2	synapt_cvb_quat_	LCMS_002	mix_2			15.000	
3	3	synapt_cvb_quat_	LCMS_003	mix_3	4.51	1657.705	31.000	21.67
4	4	synapt_cvb_quat_	LCMS_004	mix_4	4.51	3359.665	62.000	62.32
5	5	synapt_cvb_quat_	LCMS_005	mix_5	4.51	6488.589	125.000	137.05
6	6	synapt_cvb_quat_	LCMS_006	mix_6	4.51	12458.951	250.000	279.66
7	7	synapt_cvb_quat_	LCMS_007	mix_7	4.51	21278.107	500.000	490.30
8	8	synapt_cvb_quat_	LCMS_008	mix_8	4.53	31938.641	750.000	744.93
9	9	synapt_cvb_quat_	LCMS_009	vial 1 quatern	ary			
10	10	synapt_cvb_quat_	LCMS_010	vial 2 quatern	ary			
11	11	synapt_cvb_quat_	LCMS_011	vial 3 quatern	ary 4.51	5234.669		107.10
12	12	synapt_cvb_quat_	LCMS_012	vial 4 quatern	ary 4.51	5148.387		105.04
13	13	synapt_cvb_quat_	LCMS_013	vial 5 quatern	ary 4.51	4991.214		101.29
14	14	synapt_cvb_quat_	LCMS_014	vial 6 quatern	ary 4.51	4810.939		96.98
15	15	synapt_cvb_quat_	LCMS_015	vial 7 quatern	ary 4.50	4731.058		95.07
16	16	synapt_cvb_quat_	LCMS_016	vial 8 quatern	ary 4.51	6488.026		137.04
17	17	synapt_cvb_quat_	LCMS_017	vial 9 quatern	ary 4.51	6374.303		134.32
18	18	synapt_cvb_quat_	LCMS_018	vial 10 quater	mary			
mix_6	4-hydroxychalcone 4.51 12458.95	F1:TOF MS,ES- 223,0759 1.719e+005	Compound Correlation Calibration Response I Curve type:	name: 4-hydrox coefficient r = 0 curve: 41.8671 * ppe: External Ste Dipe: External Ste Linear, Origin: Ir	ychalcone 998365, r^2 = (x + 750.569 J, Area Icclude, Weightii	0.996733 ng: Null, Axis trans: N X	one ——× ۲۰۰۰۲ pg on colum	n
- - - 4.00	4.20 4.40 4.60 4.1	րուրուրուր, min 80 5.00	ອງ ເວັດ ເຊິ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ ເຊີ່ງ ເຊີ່ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່	-0 100 20	0 300 40	0 500 600 7	יייין pg on colum 00	n

Figure S11. Compound summary report, illustrative trace and calibration curve and residuals of 4-hydroxichalcone.

Figure S12. Compound summary report, illustrative trace and calibration curve and residuals of corylifol A

Quantify Compound Summary Report Compound 8: formononetin

	#	Name		Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCMS	_001	mix_1			7.000	
2	2	synapt_cvb_quat_LCMS	_002	mix_2	3.99	285.810	15.000	6.39
3	3	synapt_cvb_quat_LCMS	_003	mix_3	3.99	747.531	31.000	24.75
4	4	synapt_cvb_quat_LCMS	_004	mix_4	3.98	1592.396	62.000	58.34
5	5	synapt_cvb_quat_LCMS	_005	mix_5	3.98	3562.618	125.000	136.67
6	6	synapt_cvb_quat_LCMS	006	mix_6	3.98	7080.589	250.000	276.55
7	7	synapt_cvb_quat_LCMS	_007	mix_7	3.98	12348.684	500.000	486.01
8	8	synapt_cvb_quat_LCMS	_008	mix_8	4.00	18969.920	750.000	749.27
9	9	synapt_cvb_quat_LCMS	_009	vial 1 quaternary				
10	10	synapt_cvb_quat_LCMS	_010	vial 2 quaternary				
11	11	synapt_cvb_quat_LCMS	_011	vial 3 quaternary	3.99	102.334		
12	12	synapt_cvb_quat_LCMS	_012	vial 4 quaternary	3.98	106.393		
13	13	synapt_cvb_quat_LCMS	_013	vial 5 quaternary	3.98	106.762		
14	14	synapt_cvb_quat_LCMS	014	vial 6 quaternary	3.98	107.988		
15	15	synapt_cvb_quat_LCMS	015	vial 7 quaternary	3.98	88.698		
16	16	synapt_cvb_quat_LCMS	_016	vial 8 quaternary	3.98	3236.911		123.72
17	17	synapt_cvb_quat_LCMS	_017	vial 9 quaternary	3.98	2988.003		113.83
18	18	synapt_cvb_quat_LCMS	_018	vial 10 quaternar	У			
mix 6	formononetin	F1:TOF MS,ES-	Сог	mpound name: formor	onetin			
_	3.98	267.0657	Cor	relation coefficient: r =	0.998859	, r^2 = 0.997720		
400	7080.59	1.068e+005	Cal	ibration curve: 25.151	* x + 125.1	02		
1007	Λ		Res	sponse type: External s	Std, Area			
			Cur	ve type: Linear, Origin:	Include, V	Veighting: Null, Axis tran	is: None	
			esidual	0.0 × ×	X	×	——×	
%-			ď.	-50.0-			pg on	column
				1				
1								
1							~	
			se					
			ğ	10000-				
1			es					
0-4		min	£	-0-			ייייייי pg on	column
3.60	3.80 4.00 4.20	4.40		-0 100	200 300	0 400 500 600	700	

Figure S13. Compound summary report, illustrative trace and calibration curve and residuals of formononetin.

Figure S14. Compound summary report, illustrative trace and calibration curve and residuals of baicalein.

Quantify Compound Summary Report Compound 10: naringenin

	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCMS_001	mix_1	3.34	69.371	7.000	6.30
2	2	synapt_cvb_quat_LCMS_002	mix_2	3.34	135.825	15.000	10.31
3	3	synapt_cvb_quat_LCMS_003	mix_3	3.33	395.137	31.000	25.96
4	4	synapt_cvb_quat_LCMS_004	mix_4	3.33	947.532	62.000	59.29
5	5	synapt_cvb_quat_LCMS_005	mix_5	3.33	2182.328	125.000	133.79
6	6	synapt_cvb_quat_LCMS_006	mix_6	3.33	4377.479	250.000	266.23
7	7	synapt_cvb_quat_LCMS_007	mix_7	3.33	7871.505	500.000	477.04
8	8	synapt_cvb_quat_LCMS_008	mix_8	3.37	12544.406	750.000	758.97
9	9	synapt_cvb_quat_LCMS_009	vial 1 quaternar	у			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quaternar	y			
11	11	synapt cvb quat LCMS 011	vial 3 quaternar	y 3.34	1962.739		120.54
12	12	synapt cvb quat LCMS 012	vial 4 quaternar	y 3.33	1887.804		116.02
13	13	synapt cvb quat LCMS 013	vial 5 quaternar	y 3.33	1817.901		111.80
14	14	synapt cvb quat LCMS 014	vial 6 quaternar	y 3.33	1774.789		109.20
15	15	synapt cvb quat LCMS 015	vial 7 quaternar	y 3.33	1681.999		103.60
16	16	synapt cvb quat LCMS 016	vial 8 quaternar	y 3.33	1906.629		117.15
17	17	synapt cvb quat LCMS 017	vial 9 quaternar	y 3.33	1789.749		110.10
18	18	synapt_cvb_quat_LCMS_018	vial 10 quaterna	iry			
mix_6 100 -	naringenin 3.33 4377.48	F1:TOF MS,ES- 271.0606 6.969e+004	Compound name: ne Correlation coefficier Calibration curve: 16 Response type: Exte	aringenin ht: r = 0.9991 .5745 * x + -3 rnal Std, Area	00, r^2 = 0.998201 35.1141 a Weighting: Null Avie	trans: None	
- - - %-				× ×	, weighting, ruth, Aus X		g on column
0	3.200 3.400	min 3.600	10000 -0 -0 -0 10	××- 0 200 3	300 400 500		g on column

Figure S15. Compound summary report, illustrative trace and calibration curve and residuals of naringenin

Quantify Cor Compound 1	mpound Summary R 11: acacetin	eport					
	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt cvb quat LCMS 001	mix 1	4.62	103.268	7.000	7.60
2	2	synapt cvb quat LCMS 002	mix 2	4.61	209.768	15.000	11.70
3	3	synapt cvb quat LCMS 003	mix 3	4.61	502.278	31.000	22.97
4	4	synapt cvb quat LCMS 004	mix 4	4.62	1306.623	62.000	53.95
5	5	synapt cvb quat LCMS 005	mix 5	4.61	3043.683	125.000	120.86
6	6	synapt cvb quat LCMS 006	mix 6	4.61	7109.161	250.000	277.47
7	7	synapt cvb quat LCMS 007	mix 7	4.61	12826.779	500.000	497.72
8	8	synapt cvb quat LCMS 008	mix 8	4.63	19223.135	750.000	744.11
9	9	synapt cvb quat LCMS 009	vial 1 quaterna	ry 4.62	160.151		9.79
10	10	synapt cvb quat LCMS 010	vial 2 quaterna	ry 4.61	331.932		16.41
11	11	synapt cvb quat LCMS 011	vial 3 quaterna	ry 4.61	2533.611		101.22
12	12	synapt_cvb_quat_LCMS_012	vial 4 quaterna	ry 4.61	2491.546		99.60
13	13	synapt_cvb_quat_LCMS_013	vial 5 quaterna	ry 4.61	2488.738		99.49
14	14	synapt_cvb_quat_LCMS_014	vial 6 quaterna	ry 4.61	2234.043		89.68
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry 4.61	2203.919		88.52
16	16	synapt_cvb_quat_LCMS_016	vial 8 quaterna	ry 4.61	3219.114		127.62
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaterna	ry 4.61	3100.247		123.04
18	18	synapt_cvb_quat_LCMS_018	vial 10 quatern	ary4.61	168.266		10.10
mix_6	acacetin 4.61 7109.16	F1:TOF MS,ES- 283.0606 6.987e+004	Compound n Correlation c Calibration c Response ty Curve type: L	name: acacetin oefficient: r = 0 urve: 25.9626 * pe: External Sto inear, Origin: Ir	.999139, r^2 = 0.998 ' x + -95.3574 d, Area nclude, Weighting: N	3278 Iull, Axis trans: No	one
- - %- -			en 0.0 second data	× × ×	×	-×	→× ,, pg on column
0-4.25	5 4.50 4.75	5.00 5.25	undersponse Response	**************************************		-X	بر pg on column 00

Figure S16. Compound summary report, illustrative trace and calibration curve and residuals of acacetin.

Quantify Compound Summary Report Compound 12: scutellarein

		#	Name	S	ample Text	RT	Area	Std. Conc	pg on column
1		1	synapt_cvb_quat_LCMS_	_001 n	nix_1			7.000	
2		2	synapt_cvb_quat_LCMS_	_002 n	nix_2			15.000	
3		3	synapt_cvb_quat_LCMS_	_003 n	nix_3			31.000	
4		4	synapt_cvb_quat_LCMS_	_004 n	nix_4	2.55	6.693	62.000	67.58
5		5	synapt_cvb_quat_LCMS_	_005 n	nix_5	2.52	10.269	125.000	83.84
6		6	synapt_cvb_quat_LCMS	006 n	nix_6	2.50	42.458	250.000	230.17
7		7	synapt cvb quat LCMS	007 n	nix 7	2.51	105.274	500.000	515.72
8		8	synapt cvb quat LCMS	008 n	nix 8	2.53	157.368	750.000	752.53
9		9	synapt_cvb_quat_LCMS_	009 v	ial 1 quaternary				
10		10	synapt cvb quat LCMS	010 v	ial 2 quaternary				
11		11	synapt cvb quat LCMS	011 v	ial 3 quaternary	2.49	12.198		92.61
12		12	synapt cvb quat LCMS	012 v	ial 4 quaternary	2.50	11.316		88.60
13		13	synapt cvb quat LCMS	013 v	ial 5 guaternary	2.51	10.629		85.48
14		14	synapt cvb quat LCMS	014 v	ial 6 quaternary	2.51	14.668		103.84
15		15	synapt cvb quat LCMS	015 v	ial 7 quaternary	2.51	17.299		115.80
16		16	synapt cvb quat LCMS	016 v	ial 8 guaternary	2.50	22.404		139.00
17		17	synapt cvb quat LCMS		ial 9 quaternary	2.50	15.505		107.64
18		18	synapt_cvb_quat_LCMS_	018 v	ial 10 quaternar	У			
	mix_6 100-	scutellar 2.50 42.46	ein F1:TOF MS,ES- 285.0399 6.187e+002		Compound na Correlation co Calibration cu Response type Curve type: Lin	me: scutellarein efficient: r = 0.995: ve: 0.219981 * x + e: External Std, Are ear, Origin: Includ	563, r^2 = 0.99114 -8.17432 ea e, Weighting: Null	47 I, Axis trans: None	
	- - %- -				0.0 esignal 25.0			·····	< I pg on column
	0-2.400	2.500	2.600 min		100- -0-	× × × 100 200		0 600 700	< I pg on column

Figure S17. Compound summary report, illustrative trace and calibration curve and residuals of scutellarein.

Figure S18. Compound summary report, illustrative trace and calibration curve and residuals of morusin.

Quantify Compound Summary Report Compound 14: eriodictyol

1	# 1	Name synapt cvb quat LCMS 001	Sample Text mix 1	RT	Area	Std. Conc 7.000	pg on column
2	2	synapt_cvb_quat_LCMS_002	mix_2			15.000	
3	3	synapt cvb quat LCMS 003	mix 3	2.82	34.514	31.000	46.08
4	4	synapt_cvb_quat_LCMS_004	mix_4	2.82	98.291	62.000	60.93
5	5	synapt cvb quat LCMS 005	mix 5	2.82	260.578	125.000	98.72
6	6	synapt cvb quat LCMS 006	mix 6	2.82	747.771	250.000	212.16
7	7	synapt cvb quat LCMS 007	mix 7	2.82	1927.498	500.000	486.86
8	8	synapt_cvb_quat_LCMS_008	mix_8	2.85	3165.893	750.000	775.22
9	9	synapt_cvb_quat_LCMS_009	vial 1 quaterna	ry			
10	10	synapt cvb quat LCMS 010	vial 2 quaterna	ry			
11	11	synapt_cvb_quat_LCMS_011	vial 3 quaterna	ry			
12	12	synapt cvb quat LCMS 012	vial 4 quaterna	ry			
13	13	synapt_cvb_quat_LCMS_013	vial 5 quaterna	ry			
14	14	synapt cvb quat LCMS 014	vial 6 quaterna	ry			
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry			
16	16	synapt cvb quat LCMS 016	vial 8 quaterna	ry 2.82	2841.507		699.69
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaterna	ry 2.82	2716.554		670.59
18	18	synapt_cvb_quat_LCMS_018	vial 10 quatern	ary			
mix_6	eriodict	yol F1:TOF MS,ES-	Compound nam	e: eriodictyol			
	2.82	287.0556	Correlation coef	ficient: r = 0.99	95173, r^2 = 0.99037)	
100⊸	747.7	7 1.371e+004	Calibration curv	e: 4.2946 * x +	-163.369		
100	Δ		Response type:	External Std,	Area		
1			Curve type: Line	ar, Origin: Incl	ude, Weighting: Null,	Axis trans: None	6
1			- to all X				
1			40.0-				
-			<u>p</u> 20.0-				×
%-				<	×		
			-20.0-4		h. mhamhan han han da		ן pg on column
1							
-							
			e d				×
			€ 2000-				
1			Š I				
0-4		min	° _0 →	the second second	^		and an actions?
2.40	2.60 2.80	3.00 3.20	- 17771 7	100 200	300 400 500	600 700	1 pg on column

Figure S19. Compound summary report, illustrative trace and calibration curve and residuals of eriodictyol. Quantify Compound Summary Report Compound 15: epicatechin

	#	Name	Sample Text	RT	Area	Std. Conc	pg on columi
1	1	synapt_cvb_quat_LCMS_001	mix_1			7.000	
2	2	synapt_cvb_quat_LCMS_002	mix_2			15.000	
3	3	synapt_cvb_quat_LCMS_003	mix_3	1.26	26.725	31.000	46.19
4	4	synapt_cvb_quat_LCMS_004	mix_4	1.26	71.308	62.000	57.55
5	5	synapt_cvb_quat_LCMS_005	mix_5	1.26	237.578	125.000	99.92
6	6	synapt_cvb_quat_LCMS_006	mix_6	1.26	652.300	250.000	205.59
7	7	synapt_cvb_quat_LCMS_007	mix_7	1.27	1815.355	500.000	501.95
8	8	synapt_cvb_quat_LCMS_008	mix_8	1.29	2857.187	750.000	767.42
9	9	synapt_cvb_quat_LCMS_009	vial 1 quatern	ary			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quatern	ary			
11	11	synapt_cvb_quat_LCMS_011	vial 3 quatern	ary			
12	12	synapt_cvb_quat_LCMS_012	vial 4 quatern	ary			
13	13	synapt_cvb_quat_LCMS_013	vial 5 quatern	ary			
14	14	synapt_cvb_quat_LCMS_014	vial 6 quatern	ary			
15	15	synapt_cvb_quat_LCMS_015	vial 7 quatern	ary			
16	16	synapt_cvb_quat_LCMS_016	vial 8 quatern	ary 1.27	2094.771		573.15
17	17	synapt_cvb_quat_LCMS_017	vial 9 quatern	ary 1.27	2087.782		571.37
18	18	synapt_cvb_quat_LCMS_018	vial 10 quater	nary			
mix 6	epicatechin	F1:TOF MS,ES-	Compound n	ame: enicatech	in		
_	1.26	289.0712	Correlation co	efficient: r = 0.9	995066 r^2 = 0 9901	157	
	652.30	1.089e+004	Calibration cu	rve: 3.92448 *	x + -154.542		
100	Ν		Response typ	e: External Std	Area		
1			Curve type: Li	near, Origin: In	clude, Weighting: Nu	III, Axis trans: Nor	e
- - %-			40.0 20.0 0.0 -20.0	< ×		·····	-¥ ⊷ pg on column
- - - - - - - - - - - - - - - - - - -	0 1.20 1.40	7	es 2000		×	×	→ pg on column

Figure S20. Compound summary report, illustrative trace and calibration curve and residuals of epicatechin.

Quantify Compound Summary Report Compound 16: tectorigenin

	#	Name	Sampl	e Text RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCMS_00	1 mix_1	3.39	42.272	7.000	7.81
2	2	synapt_cvb_quat_LCMS_002	2 mix_2	3.40	115.578	15.000	13.29
3	3	synapt_cvb_quat_LCMS_003	3 mix_3	3.40	295.455	31.000	26.71
4	4	synapt_cvb_quat_LCMS_004	4 mix_4	3.40	669.102	62.000	54.61
5	5	synapt_cvb_quat_LCMS_00	5 mix_5	3.40	1623.659	125.000	125.87
6	6	synapt_cvb_quat_LCMS_006	6 mix_6	3.40	3548.895	250.000	269.59
7	7	synapt_cvb_quat_LCMS_00	7 mix_7	3.40	6367.261	500.000	479.98
8	8	synapt_cvb_quat_LCMS_008	8 mix_8	3.42	10084.717	750.000	757.49
9	9	synapt_cvb_quat_LCMS_009	9 vial 1	quaternary			
10	10	synapt_cvb_quat_LCMS_010	0 vial 2	quaternary			
11	11	synapt_cvb_quat_LCMS_01	1 vial 3	quaternary			
12	12	synapt_cvb_quat_LCMS_012	2 vial 4	quaternary			
13	13	synapt_cvb_quat_LCMS_013	3 vial 5	quaternary			
14	14	synapt_cvb_quat_LCMS_014	4 vial 6	quaternary			
15	15	synapt_cvb_quat_LCMS_01	5 vial 7	quaternary			
16	16	synapt_cvb_quat_LCMS_016	6 vial 8	quaternary 3.39	8504.422		639.52
17	17	synapt_cvb_quat_LCMS_01	7 vial 9	quaternary 3.39	7940.888		597.45
18	18	synapt_cvb_quat_LCMS_018	8 vial 10) quaternary			
mix 6	tectorigenin	F1:TOF MS,ES-	Compound r	name: tectorigenin			
-	3.40	299.056	Correlation of	coefficient: r = 0.99916	i1, r^2 = 0.998323		
	3548.90	5.646e+004	Calibration of	urve: 13.3957 * x + -62	2.4019		
100	A		Response ty	pe: External Std, Area			
			Curve type: L	inear, Origin: Include,	Weighting: Null, Axis	trans: None	
				× ×			
			.0.0	X		X	
1			Sex 10 of		×		
%-			u -10.0∃	XX			on column
1							
			10000-			~	
			e ioooo				
			ā i		X		
1			es	and the second s	-		
0-4			œ -0-1	********		pg o	on column
3.00	3.25 3.50	3.75 4.00	-	0 100 200 3	00 400 500 6	600 700	

Figure S21. Compound summary report, illustrative trace and calibration curve and residuals of tectoginerin

Figure S22. Compound summary report, illustrative trace and calibration curve and residuals of eupatilin.

		,					
Com	pound 18: taxifolin						
	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCMS_001	mix_1			7.000	
2	2	synapt_cvb_quat_LCMS_002	mix_2			15.000	
3	3	synapt_cvb_quat_LCMS_003	mix_3			31.000	
4	4	synapt_cvb_quat_LCMS_004	mix_4	1.90	54.419	62.000	68.31
5	5	synapt_cvb_quat_LCMS_005	mix_5	1.90	150.453	125.000	103.02
6	6	synapt_cvb_quat_LCMS_006	mix_6	1.90	448.651	250.000	210.81
7	7	synapt_cvb_quat_LCMS_007	mix_7	1.90	1165.840	500.000	470.05
8	8	synapt_cvb_quat_LCMS_008	mix_8	1.93	2040.369	750.000	786.17
9	9	synapt cvb quat LCMS 009	vial 1 quaterna	ry			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quaterna	ry			
11	11	synapt cvb quat LCMS 011	vial 3 quaterna	ry 1.90	1429.953		565.52
12	12	synapt_cvb_quat_LCMS_012	vial 4 quaterna	ry 1.90	1457.228		575.38
13	13	synapt cvb quat LCMS 013	vial 5 quaterna	ry 1.90	1365.535		542.24
14	14	synapt_cvb_quat_LCMS_014	vial 6 quaterna	ry 1.90	1244.388		498.45
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry 1.90	1239.002		496.50
16	16	synapt_cvb_quat_LCMS_016	vial 8 quaterna	ry 1.90	2183.665		837.97
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaterna	ry 1.90	2146.742		824.62
18	18	synapt_cvb_quat_LCMS_018	vial 10 quaterna	ary			
mix 6	toxifolin	E1:TOE MS ES-	Compound name: ta	xifolin			
	1 00	303.0505	Correlation coefficier	nt: r = 0.99220	3, r^2 = 0.984467		
	448.65	7.137e+003	Calibration curve: 2.7	'6648 * x + -1;	34.554		
100 ₇	40.00		Response type: Exte	rnal Std, Area			
			Curve type: Linear, O	rigin: Include,	Weighting: Null, Axis	trans: None	
1			10.0→ X				
-						×	
			- <u>-</u>		×		
			ë -10.0-				
%-						pg pmmmmm	on column
-							
1			o 2000⊣			X	
1			ŝ				
			g -		X		
				X			
0-1	175 200 225	a so	[~] [†]	200 20	0 400 500		on column
	1.75 2.00 2.25	2.30	-0 100	200 30	<i>i</i> u 400 300 (001 000	

Quantify Compound Summary Report

Figure S23. Compound summary report, illustrative trace and calibration curve and residuals of taxifolin.

Quan Com	tify Compound Summary R pound 19: neobavaisoflave	eport one					
	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCMS_001	mix_1			7.000	
2	2	synapt_cvb_quat_LCMS_002	mix_2			15.000	
3	3	synapt_cvb_quat_LCMS_003	mix_3	4.88	1126.746	31.000	22.05
4	4	synapt_cvb_quat_LCMS_004	mix_4	4.87	2407.341	62.000	60.57
5	5	synapt_cvb_quat_LCMS_005	mix_5	4.87	4803.700	125.000	132.66
6	6	synapt_cvb_quat_LCMS_006	mix_6	4.87	9492.488	250.000	273.71
7	7	synapt_cvb_quat_LCMS_007	mix_7	4.88	16970.033	500.000	498.64
8	8	synapt_cvb_quat_LCMS_008	mix_8	4.89	25066.918	750.000	742.21
9	9	synapt_cvb_quat_LCMS_009	vial 1 quatern	ary			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quatern	ary			
11	11	synapt_cvb_quat_LCMS_011	vial 3 quatern	ary 4.88	18487.422		544.29
12	12	synapt_cvb_quat_LCMS_012	vial 4 quatern	ary 4.88	17974.318		528.85
13	13	synapt_cvb_quat_LCMS_013	vial 5 quatern	ary 4.87	17373.080		510.77
14	14	synapt_cvb_quat_LCMS_014	vial 6 quatern	ary 4.88	16514.631		484.94
15	15	synapt_cvb_quat_LCMS_015	vial 7 quatern	ary 4.88	16182.600		474.96
16	16	synapt_cvb_quat_LCMS_016	vial 8 quatern	ary 4.87	21821.988		644.60
17	17	synapt_cvb_quat_LCMS_017	vial 9 quatern	ary 4.88	21272.105		628.06
18	18	synapt_cvb_quat_LCMS_018	vial 10 quater	rnary			
mix_6	neobavaisoflavone	F1:TOF MS,ES- C	ompound name: ne	obavaisoflavoi	ne		
	4.87	321.1127 C	orrelation coefficien	t: r = 0.999046	, r^2 = 0.998092		
100	9492.49	1.434e+005 C	alibration curve: 33.	2427 * x + 393	.754		
100	Λ	Ri Ci	esponse type: Exter urve type: Linear, Or	nal Std, Area rigin: Include, V	Veighting: Null, Axis tr	ans: None	
		esidual	0.0	××	×	——×	
%-		ι <u>κ</u>	-25.0-1,			pg or חייייייי	column
		min and a second s	20000-	×	¥	×	column
	4.60 4.80 5.00	5.20 5.40	-0 100) 200 30	0 400 500 60	0 700	

Figure S24. Compound summary report, illustrative trace and calibration curve and residuals of neobavaisoflavone.

Quantify Compound Summary Report Compound 20: bayachin

1	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
2	1	synapt_cvb_quat_LCMS_001	mix_1	E 0.9	707 202	15 000	4.40
2	2	synapt_cvb_quat_LCMS_002	mix_2	5.08	1777 675	21 000	4.40
3	3	synapt_cvb_quat_LCMS_003	mix_3	5.08	2571 226	62 000	23.33
4 c	4 E	synapt_cvb_quat_LCMS_004	mix_4	5.08	6920 749	125.000	140.61
5	5	synapt_cvb_quat_LCMS_005	mix_5	5.08	12011 220	250.000	276.07
7	7	synapt_cvb_quat_LCMS_000	mix_7	5.08	21066 107	230.000	270.07
, o	<i>/</i>	synapt_cvb_quat_LCMS_007	mix_7	5.08	21900.197	750.000	465.09
0	0	synapt_cvb_quat_LCMS_000	vial 1 quatorna	n/		730.000	
5 10	5 10	synapt_cvb_quat_LCMS_009	vial 2 quaterna	ry ny			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quaterna	ry ny			
12	12	synapt_cvb_quat_LCMS_012	vial 5 quaterna	ry ny			
12	12	synapt_cvb_quat_LCMS_012	vial 5 quaterna	ry ry			
14	14	synapt_cvb_quat_LCMS_013	vial 6 quaterna	ry rv			
15	14	synapt_cvb_quat_LCMS_014	vial 7 quaterna	ry rv			
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry ny			
17	10	synapt_cvb_quat_LCMS_010	vial 8 quaterna	ry n/			
18	18	synapt_cvb_quat_LCMS_017	vial 10 quaterna	anv			
mix_6	bavachin 5.08 12811.33	F1:TOF MS,ES- 323.1283 1.892e+005	Compound na Correlation co Calibration cu Response type Curve type: Lir	ame: bavachin efficient: r = 0.99 rve: 44.2221 * x + e: External Std, A hear, Origin: Inclu x X	5011, r^2 = 0.9920 602.734 rea de, Weighting: Nu X	38 II, Axis trans: Nor	1e
- %- - -			8 20000 1	× 	·····		→ pg on column
0-	4.80 5.00 5.20	min 0 5.40 5.60	-0- Resp	100	200 300	400	דיק pg on column 500

Figure S25. Compound summary report, illustrative trace and calibration curve and residuals of bavachin.

Quantify Compound Summary Report Compound 21: mirificin

Figure S26. Compound summary report, illustrative trace and calibration curve and residuals of mirificin.

Compound 22: amentoflavone RT Std. Conc pg on column Sample Text Area # Name 7.000 15.000 1 1 synapt_cvb_quat_LCMS_001 . mix_1 synapt_cvb_quat_LCMS_002 synapt_cvb_quat_LCMS_003 2 3 4 5 6 2 mix 2 3 31.000 mix_3 3.89 76.785 34.40 synapt_cvb_quat_LCMS_004 synapt_cvb_quat_LCMS_005 mix_4 3.89 248.328 62.000 49.47 4 5 6 90.70 717.625 125.000 mix 5 3.90 synapt_cvb_quat_LCMS_006 mix_6 3.89 2454.092 250.000 243.24 7 8 9 10 7 synapt_cvb_quat_LCMS_007 synapt_cvb_quat_LCMS_008 5843.641 500.000 mix 7 3.89 540.99 8 mix_8 3.91 8012.726 750.000 731.54 9 10 synapt_cvb_quat_LCMS_009 synapt_cvb_quat_LCMS_010 vial 1 quaternary vial 2 quaternary 11 12 13 14 15 16 11 synapt_cvb_quat_LCMS_011 vial 3 quaternary 3.89 16397.947 1468.14 synapt_cvb_quat_LCMS_012 synapt_cvb_quat_LCMS_013 1362.38 1457.31 12 vial 4 quaternary 3.89 15194.006 13 vial 5 quaternary 3.89 16274.637 14 15 synapt_cvb_quat_LCMS_014 vial 6 quaternary 3.88 15602.785 1398.29 15849.326 1419.94 synapt_cvb_quat_LCMS 015 vial 7 quaternary 3.88 16 synapt_cvb_quat_LCMS_016 vial 8 quaternary 3.89 21357.898 1903.85 17 18 17 synapt_cvb_quat_LCMS_017 vial 9 quaternary 3.88 21151.867 1885.75 synapt_cvb_quat_LCMS_018 18 vial 10 quaternary Compound name: amentoflavone mix_6 amentoflavone F1:TOF MS,ES-Correlation coefficient: r = 0.995621, $r^{2} = 0.991260$ Calibration curve: 11.3837 * x + -314.85 537.0822 3.89 2.084e+004 2454.09 100-Response type: External Std, Area Curve type: Linear, Origin: Include, Weighting: Null, Axis trans: None Residual 0.0 🗝 pa on column Response 5000 , pg on column 700 - min 200 300 400 500 600 3.50 4.00 4.50 5.00 100

Quantify Compound Summary Report

Figure S27. Compound summary report, illustrative trace and calibration curve and residuals of amentoflavone.

Quanti Compo	ify Compound Summary Re pund 23: silibinin	eport					
	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt cvb quat LCMS 001	mix 1			10.000	
2	2	synapt cvb quat LCMS 002	mix 2			19.000	
3	3	synapt cvb quat LCMS 003	mix 3	3.28	1725.765	38.000	21.81
4	4	synapt cvb quat LCMS 004	mix 4	3.28	3572.831	78.000	75.34
5	5	synapt_cvb_quat_LCMS_005	mix_5	3.28	7198.317	156.000	180.41
6	6	synapt_cvb_quat_LCMS_006	mix_6	3.28	13122.800	312.000	352.09
7	7	synapt_cvb_quat_LCMS_007	mix_7	3.28	22439.619	625.000	622.09
8	8	synapt_cvb_quat_LCMS_008	mix_8	3.30	32907.699	940.000	925.45
9	9	synapt_cvb_quat_LCMS_009	vial 1 quaterna	ry			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quaterna	ry			
11	11	synapt_cvb_quat_LCMS_011	vial 3 quaterna	ry 3.28	44913.605		1273.38
12	12	synapt_cvb_quat_LCMS_012	vial 4 quaterna	ry 3.28	43063.973		1219.77
13	13	synapt_cvb_quat_LCMS_013	vial 5 quaterna	ry 3.28	42131.922		1192.76
14	14	synapt_cvb_quat_LCMS_014	vial 6 quaterna	ry 3.28	40121.707		1134.51
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaterna	ry 3.28	38882.977		1098.61
16	16	synapt_cvb_quat_LCMS_016	vial 8 quaterna	ry 3.28	58937.867		1679.79
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaterna	ry 3.28	56205.832		1600.62
18	18	synapt_cvb_quat_LCMS_018	vial 10 quatern	ary			
mix_6	silibinin	F1:TOF MS,ES- Co	ompound name: silil	oinin	2 = 0 005222		
	3.28	401.1135	libration curve: 34 5	072 * x + 973	3.02		
100-	13122.80	Re	sponse type: Extern	al Std. Area			
		Ci	irve type: Linear, Ori	gin: Include,	Weighting: Null, Axis tr	ans: None	
		dual	0.0 ⁴ ×	×	×	 ×	
%_		s S	-20.0 -40.0	ակուղուղուղո	արարարարարարար	աղադարոր pg oi	n column
		o o o se o	20000	X	X	X	
0-4-	2.75 3.00 3.25	3.50 3.75 min	-0 -0 100	200 300 4	400 500 600 700	800 900	n column

Figure S28. Compound summary report, illustrative trace and calibration curve and residuals of silibinin.

Quantify Compound Summary Report Compound 24: jaceosidin

1	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_LCNS_001	mix_1	1 54	6 5 2 9	15.000	21.22
2	2	synapt_cvb_quat_LCNIS_002	mix_2	1.54	11.055	15.000	21.55
5	5	synapt_cvb_quat_ccivis_003	mix_5	1.52	11.955	51.000	24.26
4	4	synapt_cvb_quat_LCNIS_004	mix_4	1.55	75.401	62.000	58.84
5	5	synapt_cvb_quat_LCIVIS_005	mix_5	1.55	182.385	125.000	117.12
6	6	synapt_cvb_quat_LCMS_006	mix_6	1.55	3/5.//0	250.000	222.46
/	/	synapt_cvb_quat_LCMS_007	mix_/	1.55	941.951	500.000	530.87
8	8	synapt_cvb_quat_LCMS_008	mix_8	1.56	1326.479	750.000	740.33
9	9	synapt_cvb_quat_LCMS_009	vial 1 quaternary	Ý			
10	10	synapt_cvb_quat_LCMS_010	vial 2 quaternary	Ý			
11	11	synapt_cvb_quat_LCMS_011	vial 3 quaternary	Ý			
12	12	synapt_cvb_quat_LCMS_012	vial 4 quaternary	Ý			
13	13	synapt_cvb_quat_LCMS_013	vial 5 quaternary	Ý			
14	14	synapt_cvb_quat_LCMS_014	vial 6 quaternary	Ý			
15	15	synapt_cvb_quat_LCMS_015	vial 7 quaternary	Ý			
16	16	synapt_cvb_quat_LCMS_016	vial 8 quaternary	Ý			
17	17	synapt_cvb_quat_LCMS_017	vial 9 quaternary	Ý			
18	18	synapt_cvb_quat_LCMS_018	vial 10 quaterna	ry			
			mpound name: jaced	sidin			
mix_o	jaceosidin	F1:10F M5,ES-	rrelation coefficient: r	= 0.997818. r^2 =	0.995640		
	1.55	7 229e+003 Ca	libration curve: 1.835	81 * x + -32.623			
100-	375.77	7.2296+003 Re	sponse type: Externa	I Std. Area			
	Λ	Cu	rve type: Linear, Origi	n: Include, Weigh	ting: Null, Axis trar	ns:None	
-			10.0 X				
		<u></u>	40.0				
		Ę.	20.0		~		
1		es	0.0 × ×	~	X	— ×	
%-		Ľ.	-20.0	~		ma on co	olumn
1							
-						<u> </u>	
		se	1000		×		
		Ā					
1	L	e	1				
0- 4,,		min ⁽²	-0- 1444,			יייייייי pg on co	olumn
1.00 1.20	1.40 1.60	1.80 2.00	-0 100	200 300 40	00 500 600	700	

Figure S29. Compound summary report, illustrative trace and calibration curve and residuals of jaceosidin.

Figure S30. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Quantify compound summary report for the image (logo UJI) using a quaternary encoding scheme and FIA-MS as decoding method

Quan Comp	tify Compound Summary oound 1: 6-hydroxiflavon	Report <mark>e</mark>						
	#	Name	Sample Text	Type	RT	Area	Std. Conc	pg on column
1	1	synapt cyb guat FIA 001	mix 3	Standard	0.13	49.576	30.000	33.17
2	2	synapt cvb quat FIA 002	mix 4	Standard			62.000	
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.13	80.600	125.000	111.18
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	142.767	250.000	267.49
5	5	synapt_cvb_quat_FIA_005	mix_7	Standard	0.13	207.104	500.000	429.27
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.13	349.617	750.000	787.61
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.13	444.536	1000.000	1026.28
8	8	synapt_cvb_quat_FIA_008	vial 1 quatern	ary Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quatern	ary Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quatern	ary Analyte				
11	11	synapt_cvb_quat_FIA_011	vial 4 quatern	ary Analyte				
12	12	synapt_cvb_quat_FIA_012	vial 5 quatern	ary Analyte				
13	13	synapt_cvb_quat_FIA_013	vial 6 quatern	ary Analyte				
14	14	synapt_cvb_quat_FIA_014	vial 7 quatern	ary Analyte				
15	15	synapt_cvb_quat_FIA_015	vial 8 quatern	ary Analyte				
16	16	synapt_cvb_quat_FIA_016	vial 9 quatern	ary Analyte				
17	17	synapt_cvb_quat_FIA_017	vial 10 quater	nary Analyte				
mix_8	6-hydroxiflavone	F1:TOF MS,ES-	Compound name	: 6-hydroxiflavon	e			
	0.13	237.0552	Collibration coeffic	0 207600 * v + 2	100, 102 = 0.9918	947		
100	349.62	7.709e+003	Calibration curve: Response type: E Curve type: Linear	xternal Std, Area , Origin: Exclude	, Weighting: 1/	x, Axis trans: None		
			× 10.0 X X X X X X X X X X X X X X X X X X	×		×	_×	
%- - - -			82 400-1 05 200-1	·····	·····	X	⊷ pg on column ×	
0-4-		min	<u>م</u> رجع م	***			pg on column	
	0.100 0.200	0.300	-0	200 4	00 ÖÖÖ	800	1000	

Figure S31. Compound summary report, illustrative trace and calibration curve and residuals of 6-hydroxiflavone.

Quantify Compound Summary Report Compound 2: guayjaverin										
	#	Name	Sample Text	Type	RT	Area	Std. Conc	pg on column		
1	1	synapt cyb quat FIA 001	mix 3	Standard	0.13	37.561	30.000	18.19		
2	2	synapt cyb quat FIA 002	mix 4	Standard	0.12	65.418	62.000	55.67		
3	3	synapt cvb quat FIA 003	mix 5	Standard	0.13	149.561	125.000	168.87		
4	4	synapt cyb quat FIA 004	mix 6	Standard	0.13	243.610	250.000	295.40		
5	5	synapt cyb quat FIA 005	mix 7	Standard	0.13	425.618	500.000	540.26		
6	6	synapt cvb quat FIA 006	mix 8	Standard	0.12	568.082	750.000	731.92		
7	7	synapt cyb quat FIA 007	mix 9	Standard	0.13	698.002	1000.000	906.70		
8	8	synapt cvb quat FIA 008	vial 1 guaternar	y Analyte						
9	9	synapt cvb quat FIA 009	vial 2 guaternar	y Analyte						
10	10	synapt cyb quat FIA 010	vial 3 guaternar	v Analvte						
11	11	synapt cvb quat FIA 011	vial 4 guaternar	y Analyte						
12	12	synapt cvb quat FIA 012	vial 5 guaternar	y Analyte						
13	13	synapt cvb quat FIA 013	vial 6 guaternar	y Analyte						
14	14	synapt_cvb_quat_FIA_014	vial 7 quaternar	y Analyte						
15	15	synapt_cvb_quat_FIA_015	vial 8 quaternar	y Analyte						
16	16	synapt_cvb_quat_FIA_016	vial 9 quaternar	y Analyte						
17	17	synapt_cvb_quat_FIA_017	vial 10 quaterna	ry Analyte						
>										
mix 8	quaviaverin	F1:TOF MS,ES-	Compound name	: guayjaverin						
_	0.12	433.0771	Correlation coeffic	cient: r = 0.989	688, r^2 = 0.9794	482				
	568.08	9.056e+003	Calibration curve:	0.743316 * x +	24.0374					
100 ₇	Δ		Response type: E	xternal Std, Are	ea					
- - - - - -			Curve type: Linea	r, Origin: Exclud	de, Weighting: 1/	X, Axis trans: Nor	× y pg on colu	mn		
0	0.100 0.200		8 500 -0 -0	200	400 600	X 800		ımn		

Figure S33. Compound summary report, illustrative trace and calibration curve and residuals of wogonoside.

Quantify Compour	Compound Summa nd 4: orientin	ary Report						
	#	Name	Sample Text	Туре	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_FIA_001	mix_3	Standard	0.12	29.186	30.000	30.77
2	2	synapt_cvb_quat_FIA_002	mix_4	Standard	0.13	42.794	62.000	53.65
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.13	88.670	125.000	130.80
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	165.354	250.000	259.76
5	5	synapt_cvb_quat_FIA_005	mix_7	Standard	0.12	308.521	500.000	500.53
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.12	512.025	750.000	842.76
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.12	545.293	1000.000	898.71
8	8	synapt_cvb_quat_FIA_008	vial 1 quaterna	iry Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaterna	iry Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaterna	iry Analyte				
11	11	synapt_cvb_quat_FIA_011	vial 4 quaterna	iry Analyte				
12	12	synapt_cvb_quat_FIA_012	vial 5 quaterna	iry Analyte				
13	13	synapt_cvb_quat_FIA_013	vial 6 quaterna	iry Analyte				
14	14	synapt_cvb_quat_FIA_014	vial 7 quaterna	iry Analyte				
15	15	synapt_cvb_quat_FIA_015	vial 8 quaterna	iry Analyte				
16	16	synapt_cvb_quat_FIA_016	vial 9 quaterna	iry Analyte				
17	17	synapt_cvb_quat_FIA_017	vial 10 quaterr	ary Analyte				
mix_8	orientin	F1:TOF MS,ES-	Compound na	me: orientin				
	0.12	447.0927	Correlation co	efficient: r = 0.9	994088, r^2 =	0.988211		
400	512.02	9.191e+003	Calibration cu	rve: 0.594633	x + 10.8894			
100 ₇	Δ		Response typ	e: External Std,	Area			
			Curve type: Lir	iear, Origin: Ex	clude, Weight	ting: 1/x, Axis trans	s: None	
			ng 10.0 개 및	× ×		×		
			· 0.0		×			
			-10.0 a				×	
%-				X 			pg or	n column
-								
1			8 500-J			×	X	
1			ë		×			
-			d d					
			r≊ _0≟≁	X				column
0-477	0 100 0 20	••••••••••••••••••••••••••••••••••••••	-0	200	400	600 800) 1000	Column

Figure S34. Compound summary report, illustrative trace and calibration curve and residuals of orientin.

Figure S35. Compound summary report, illustrative trace and calibration curve and residuals of 5,7dihydroxichromone.

Quantify Compour	Compound Summary Id 6: 4-hydroxychalc	Report cone						
	#	Name	Sample Text	Туре	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_FIA_001	mix_3	Standard	0.12	29.796	30.000	29.17
2	2	synapt_cvb_quat_FIA_002	mix_4	Standard	0.13	156.161	62.000	74.45
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.13	316.584	125.000	131.94
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	536.235	250.000	210.65
5	5	synapt_cvb_quat_FIA_005	mix_7	Standard	0.13	1072.955	500.000	402.97
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.13	2081.970	750.000	764.54
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.13	3027.261	1000.000	1103.27
8	8	synapt_cvb_quat_FIA_008	vial 1 quaterna	ry Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaterna	ry Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaterna	ry Analyte	0.12	174.596		81.06
11	11	synapt_cvb_quat_FIA_011	vial 4 quaterna	ry Analyte	0.13	197.798		89.37
12	12	synapt_cvb_quat_FIA_012	vial 5 quaterna	ry Analyte	0.12	199.075		89.83
13	13	synapt_cvb_quat_FIA_013	vial 6 quaterna	ry Analyte	0.12	220.435		97.49
14	14	synapt_cvb_quat_FIA_014	vial 7 quaterna	ry Analyte	0.12	187.905		85.83
15	15	synapt_cvb_quat_FIA_015	vial 8 quaterna	ry Analyte	0.13	300.257		126.09
16	16	synapt_cvb_quat_FIA_016	vial 9 quaterna	ry Analyte	0.13	316.765		132.00
17	17	synapt_cvb_quat_FIA_017	vial 10 quatern	ary Analyte				
mix_8	\bigwedge	F1:TOF MS,ES- 223.0759 4.497e+004	Compound name: 4 Correlation coefficie Calibration curve: 2 Response type: Extr Curve type: Linear, 0	I-hydroxychalco ent: r = 0.99028 .79068 * x + -5 ernal Std, Area Drigin: Exclude	one 17, r^2 = 0.980 1.6154 , Weighting: 1/	668 /x, Axis trans: None		
- - % -			Sesidinal Resident	×	····· * ······	×	× 	n
- - - -	0,100 0,200	0.300 min	2000 -0 -0	200 4	00 600	× 800	ے۔ pg on colum 1000	n

Figure S36. Compound summary report, illustrative trace and calibration curve and residuals of 4-hydroxichalcone.

Figure S37. Compound summary report, illustrative trace and calibration curve and residuals of corylifol A

Quantify Compour	Compound Summary F 1d 8: formononetin	Report						
	#	Name	Sample Text	Type	RT	Area	Std. Conc	pg on column
1	1	synant cyb quat EIA 001	mix 3	Standard		74.60	30,000	P5 011 column
2	2	synapt_cvb_quat_FIA_002	mix 4	Standard	0.12	96.214	62.000	62.68
3	3	synapt_cvb_quat_FIA_003	mix 5	Standard	0.13	243.970	125.000	141.68
4	4	synapt cyb quat FIA 004	mix 6	Standard	0.13	424.337	250.000	238.12
5	5	synapt cyb guat FIA 005	mix 7	Standard	0.13	747.486	500.000	410.89
6	6	synapt cyb quat FIA 006	mix 8	Standard	0.13	1369.286	750.000	743.36
7	7	synapt cyb quat FIA 007	mix 9	Standard	0.13	2018.138	1000.000	1090.28
8	8	synapt cyb quat FIA 008	vial 1 guaterna	rv Analyte				
9	9	synapt cyb quat FIA 009	vial 2 quaterna	ry Analyte				
10	10	synapt cyb quat FIA 010	vial 3 guaterna	ry Analyte				
11	11	synapt cyb quat FIA 011	vial 4 quaterna	ry Analyte				
12	12	synapt cyb quat FIA 012	vial 5 guaterna	ry Analyte				
13	13	synapt cyb quat FIA 013	vial 6 quaterna	ry Analyte				
14	14	synapt cyb quat FIA 014	vial 7 guaterna	ry Analyte				
15	15	synapt cyb quat FIA 015	vial 8 guaterna	ry Analyte	0.12	161.730		97.71
16	16	synapt cyb quat FIA 016	vial 9 guaterna	ry Analyte	0.13	165.761		99.86
17	17	synapt_cvb_quat_FIA_017	vial 10 quaterr	ary Analyte				
mix_8	formononetin 0.13	F1:TOF MS,ES- 267.0657 2.882e+004	Compound na Correlation co Calibration cur	me: formonone efficient: r = 0.9 rve: 1.8703 * x +	etin 91588, r^2 = 0 21.0091	.983247		
100-	1369.29	2.00201004	Response type Curve type: Lin	e: External Std, lear, Origin: Exc	Area dude, Weighti	ng: 1/x, Axis trans:	None	
			-10.01 -10.0 -10.0	× × ×	¥	×	×	
%- - - -		min		× · · · · · · · · · · · · · · · · · · ·		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		column

Figure S38. Compound summary report, illustrative trace and calibration curve and residuals of formononetin.

compot	Ind 9: balcalein							
	#	Name	Sample Text	Туре	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_FIA_001	mix_3	Standard	0.12	59.476	30.000	44.96
2	2	synapt_cvb_quat_FIA_002	mix_4	Standard	0.13	64.117	62.000	53.23
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.12	95.453	125.000	109.09
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	138.803	250.000	186.36
5	5	synapt_cvb_quat_FIA_005	mix_7	Standard	0.13	268.603	500.000	417.75
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.13	511.692	750.000	851.08
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.13	625.828	1000.000	1054.54
8	8	synapt_cvb_quat_FIA_008	vial 1 quaterna	ry Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaterna	ry Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaterna	ry Analyte	0.12	50.498		28.95
11	11	synapt_cvb_quat_FIA_011	vial 4 quaterna	ry Analyte	0.12	50.041		28.14
12	12	synapt_cvb_quat_FIA_012	vial 5 quaterna	ry Analyte	0.13	50.513		28.98
13	13	synapt_cvb_quat_FIA_013	vial 6 quaterna	ry Analyte	0.12	50.078		28.20
14	14	synapt_cvb_quat_FIA_014	vial 7 quaterna	ry Analyte	0.13	48.557		25.49
15	15	synapt_cvb_quat_FIA_015	vial 8 quaterna	ry Analyte	0.13	105.584		127.15
16	16	synapt_cvb_quat_FIA_016	vial 9 quaterna	ry Analyte	0.13	104.420		125.07
17	17	synapt_cvb_quat_FIA_017	vial 10 quatern	ary Analyte				
nix_8	baicalein	F1:TOF MS,ES- 269.045	Compound name: I Correlation coefficie	baicalein ent: r = 0.98584	4, r^2 = 0.971	888		
	511.69	9.717e+003	Calibration curve: 0	.560976 * x + 3	4.2571			
ן 100	٨		Response type: Ext	ernal Std, Area				
-	\wedge		Curve type: Linear,	Origin: Exclude	e, Weighting: 1	/x, Axis trans: Non	e	
			× xidual			×	×	
%-			-25.0 × ×	×	×		ריידי pg on colur	nn
-			0 1				×	
			se 500-			X		
			××××					
0-	0.100 0.000	min	· -0-				pg on colur	nn
	0.100 0.200	0.300	-0	200 4	00 600	008 0	1000	

Quantify Compound Summary Report

Figure S39. Compound summary report, illustrative trace and calibration curve and residuals of baicalein.

Figure S40. Compound summary report, illustrative trace and calibration curve and residuals of naringenin

Compou	nd 11: acacetin							
	#	Name	Sample Text	Туре	RT	Area	Std. Conc	pg on columr
1	1	synapt_cvb_quat_FIA_001	mix_3	Standard	0.13	45.954	30.000	32.94
2	2	synapt_cvb_quat_FIA_002	mix_4	Standard	0.13	92.181	62.000	65.71
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.13	186.762	125.000	132.77
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	294.791	250.000	209.36
5	5	synapt_cvb_quat_FIA_005	mix_7	Standard	0.13	572.239	500.000	406.06
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.13	1100.522	750.000	780.59
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.13	1536.338	1000.000	1089.57
8	8	synapt_cvb_quat_FIA_008	vial 1 quaternary	Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaternary	Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaternary	Analyte	0.13	138.884		98.83
11	11	synapt_cvb_quat_FIA_011	vial 4 quaternary	Analyte	0.12	121.456		86.47
12	12	synapt_cvb_quat_FIA_012	vial 5 quaternary	Analyte	0.13	140.831		100.21
13	13	synapt_cvb_quat_FIA_013	vial 6 quaternary	Analyte	0.13	130.657		92.99
14	14	synapt_cvb_quat_FIA_014	vial 7 quaternary	Analyte	0.13	153.461		109.16
15	15	synapt_cvb_quat_FIA_015	vial 8 quaternary	Analyte	0.13	138.089		98.26
16	16	synapt_cvb_quat_FIA_016	vial 9 quaternary	Analyte	0.13	147.879		105.20
17	17	synapt_cvb_quat_FIA_017	vial 10 quaternar	y Analyte				
mix_8	acacetin	F1:TOF MS,ES-	Compound name: aca	cetin				
	0.13	283.0606	Correlation coefficient	r = 0.99136	i2, r^2 = 0.982798			
	1100.52	2.071e+004	Calibration curve: 1.41	051 * x + -0.	509762			
1007	Λ		Response type: Extern	al Std. Area				
-			Curve type: Linear, Ori	gin: Exclude	, Weighting: 1/x, Ax	s trans: Nor	ne	
-			× ××			×	×	
%- -			≌ -10.0 ۲۰۰۰۰۲۰۰۰	×	·····¥······		יייין pg on colur	nn
-			8 1000-			- X	X	
-		~~~	espec		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
0-4	0.100 0.200	0.300 min	[∞] -0	<u> </u>		<u> </u>	pg on colur	nn
			-0 2	00 4	00 000	000	1000	

Quantify Compound Summary Report

Figure S41. Compound summary report, illustrative trace and calibration curve and residuals of acacetin.

Figure S43. Compound summary report, illustrative trace and calibration curve and residuals of morusin.

Figure S44. Compound summary report, illustrative trace and calibration curve and residuals of eriodictyol.

nd 15: epicatechin Sample Text RT Area Std. Conc pg on column # Name Type synapt_cvb_quat_FIA_001 synapt_cvb_quat_FIA_002 synapt_cvb_quat_FIA_003 0.13 0.13 0.12 27.14 52.36 169.14 mix_3 mix_4 Standard Standard 29.763 37.093 30.000 62.000 1 1 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3 71.023 mix 5 Standard 125.000 synapt_cvb_quat_FIA_004 synapt_cvb_quat_FIA_005 mix_6 Standard 0.12 89.351 163.726 250.000 500.000 232.21 488.18 4 5 7 8 9 10 11 12 13 14 15 16 17 mix 7 Standard mix_9 Standar mix_9 Standar vial 1 quaternary Analyte vial 3 quaternary Analyte synapt_cvb_quat_FIA_006 synapt_cvb_quat_FIA_007 Standard Standard 0.12 0.12 235.059 316.601 750.000 1000.000 733.67 1014.30 synapt_cvb_quat_FIA_008 synapt_cvb_quat_FIA_009 synapt_cvb_quat_FIA_010 synapt_cvb_quat_FIA_011 synapt_cvb_quat_FIA_012 vial 4 quaternary Analyte vial 5 quaternary Analyte synapt_cvb_quat_FIA_013 vial 6 quaternary Analyte synapt_cvb_quat_FIA_014 synapt_cvb_quat_FIA_015 vial 7 quaternary Analyte vial 8 quaternary Analyte 421.56 0.12 144.369 synapt cvb quat FIA 016 vial 9 guaternary Analyte 0.13 143.453 418.41 synapt_cvb_quat_FIA_017 vial 10 quaternary Analyte F1:TOF MS,ES-Compound name: epicatechin mix_8 epicatechin 289.0712 4.075e+003 Correlation coefficient: r = 0.995103, r^2 = 0.990230 Calibration curve: 0.290568 * x + 21.8776 0.12 235.06 100-Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Residual 20.0 -0.0 % n pg on column Response 200 דיד pg on column 1000 -0 0 🕂 min 200 400 600 800 0.100 0.200 0.300

Quantify Compound Summary Report

Figure S45. Compound summary report, illustrative trace and calibration curve and residuals of epicatechin.

Quantif Compo	y Compound Summary I und 16: tectorigenin	Report						
	#	Name	Sample Text	Type	RT	Area	Std. Conc	pg on column
1	1	synapt cvb quat FIA 001	mix 3	Standard	0.13	23.089	30.000	40.37
2	2	synapt cvb quat FIA 002	mix 4	Standard	0.13	44.182	62.000	62.68
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.13	97.741	125.000	119.34
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	173.096	250.000	199.04
5	5	synapt cvb quat FIA 005	mix 7	Standard	0.13	308.872	500.000	342.66
6	6	synapt cvb quat FIA 006	mix 8	Standard	0.12	705.528	750.000	762.22
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.13	1110.599	1000.000	1190.68
8	8	synapt_cvb_quat_FIA_008	vial 1 quaterna	ry Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaterna	ry Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaterna	ry Analyte				
11	11	synapt_cvb_quat_FIA_011	vial 4 quaterna	ry Analyte				
12	12	synapt_cvb_quat_FIA_012	vial 5 quaterna	iry Analyte				
13	13	synapt_cvb_quat_FIA_013	vial 6 quaterna	iry Analyte				
14	14	synapt_cvb_quat_FIA_014	vial 7 quaterna	iry Analyte				
15	15	synapt_cvb_quat_FIA_015	vial 8 quaterna	ry Analyte	0.13	593.886		644.13
16	16	synapt_cvb_quat_FIA_016	vial 9 quaterna	iry Analyte	0.12	595.400		645.73
17	17	synapt_cvb_quat_FIA_017	vial 10 quatern	ary Analyte				
mix_8	tectorigenin 0.12 705.53	F1:TOF MS,ES- 299.056 1.545e+004	Compound na Correlation co Calibration cu Response typ Curve type: Lir	ame: tectorigen efficient: r = 0.9 rve: 0.945407 ^s e: External Std near, Origin: Ex	nin 975501, r^2 = * x + -15.0807 , Area cclude, Weight	0.951602 ling: 1/x, Axis trans	: None	
- %- -			Kesidual Residual Residual Concernation Concernation	× × ×	¥	×	×	n column
0-	0.100 0.200	0.300 min		200	X 400	600 800	×	n column

Figure S47. Compound summary report, illustrative trace and calibration curve and residuals of eupatilin.

Figure S48. Compound summary report, illustrative trace and calibration curve and residuals of taxifolin.

Figure S49. Compound summary report, illustrative trace and calibration curve and residuals of neobavaisoflavone.

Quantify	Compound Summary Re	port						
compou	nd 20: bavacnin							
	#	Name	Sample Text	Type	RT	Area	Std. Conc	pg on column
1	1	synapt cvb quat FIA 001	mix 3	Standard	0.15	26.738	30.000	40.72
2	2	synapt_cvb_quat_FIA_002	mix_4	Standard	0.14	40.354	62.000	50.22
3	3	synapt cvb quat FIA 003	mix 5	Standard	0.12	116.739	125.000	103.51
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	314.902	250.000	241.75
5	5	synapt cvb quat FIA 005	mix 7	Standard	0.13	677.876	500.000	494.98
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.12	1094.790	750.000	785.83
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard			1000.000	
8	8	synapt_cvb_quat_FIA_008	vial 1 quaterna	ry Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaterna	ry Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaterna	ry Analyte				
11	11	synapt_cvb_quat_FIA_011	vial 4 quaterna	ry Analyte				
12	12	synapt_cvb_quat_FIA_012	vial 5 quaterna	ry Analyte				
13	13	synapt_cvb_quat_FIA_013	vial 6 quaterna	ry Analyte				
14	14	synapt_cvb_quat_FIA_014	vial 7 quaterna	ry Analyte				
15	15	synapt_cvb_quat_FIA_015	vial 8 quaterna	ry Analyte				
16	16	synapt_cvb_quat_FIA_016	vial 9 quaterna	ry Analyte				
17	17	synapt_cvb_quat_FIA_017	vial 10 quaterr	ary Analyte				
mix_8 ¹⁰⁰ 7	bavachin 0.12 1094.79	F1:TOF MS,ES- 323.1283 2.134e+004	Compound na Correlation co Calibration cu Response typ	ame: bavachin efficient: r = 0. rve: 1.43341 * e: External Std	994959, r^2 = x + -31.6275 I, Area	= 0.989943		
- - - - - - -			Curve type: Lin	iear, Orgin: E:	×	Aurona (1/x, Axis tran	×	on column
0-	0.2	5 	0- Resp	100 200		400 500 60		on column

Figure S50. Compound summary report, illustrative trace and calibration curve and residuals of bavachin.

Figure S51 Compound summary report, illustrative trace and calibration curve and residuals of mirificin.

Quantify	Compound Summary Re	eport						
	#	Name	Sample Text	Туре	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_FIA_001	mix_3	Standard			30.000	
2	2	synapt_cvb_quat_FIA_002	mix_4	Standard	0.14	50.204	62.000	47.10
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.13	124.574	125.000	139.96
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.13	236.332	250.000	279.50
5	5	synapt_cvb_quat_FIA_005	mix_7	Standard	0.14	453.327	500.000	550.43
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.13	569.544	750.000	695.54
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.13	792.946	1000.000	974.48
8	8	synapt_cvb_quat_FIA_008	vial 1 quaternary	Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaternary	Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaternary	Analyte	0.13	899.198		1107.14
11	11	synapt_cvb_quat_FIA_011	vial 4 quaternary	Analyte	0.13	942.571		1161.30
12	12	synapt_cvb_quat_FIA_012	vial 5 quaternary	Analyte	0.13	957.291		1179.68
13	13	synapt_cvb_quat_FIA_013	vial 6 quaternary	Analyte	0.13	958.714		1181.45
14	14	synapt_cvb_quat_FIA_014	vial 7 quaternary	Analyte	0.13	981.280		1209.63
15	15	synapt_cvb_quat_FIA_015	vial 8 quaternary	Analyte	0.13	1140.533		1408.47
16	16	synapt_cvb_quat_FIA_016	vial 9 quaternary	Analyte	0.13	1059.169		1306.88
17	17	synapt_cvb_quat_FIA_017	vial 10 quaterna	ry Analyte				
mix_8	amentoflavone 0.13	F1:TOF MS,ES- 537.0832	Compound nar Correlation coe	ne: amentofi fficient: r = 0	avone .994176, r^2 =	0.988385		
	569 54	9.106e+003	Calibration curv	/e: 0.800904	* x + 12.4831			
100 ₋	Δ		Response type	: External Sto	d, Area			
			Curve type: Line	ear, Origin: E × ×	xclude, Weigh	ting: 1/x, Axis trar	ns: None	
			0.0 gr			×	×	
0/			<u>م</u> -20.0-	,				on column
							Freedom 199	
			8 500-		~	X	X	
		2	Kesp			-		
0-4	0.100 0.200	0.300 min	-0 -0	200	400	600 80	pg 1000	on column

Figure S52. Compound summary report, illustrative trace and calibration curve and residuals of amentoflavone.

Figure S53. Compound summary report, illustrative trace and calibration curve and residuals of silibinin.

Figure S54. Compound summary report, illustrative trace and calibration curve and residuals of jaceosidin.

Quantify Compound Summary Report Compound 25: rhoifolin

	#	Name	Sample Text	Туре	RT	Area	Std. Conc	pg on column
1	1	synapt_cvb_quat_FIA_001	mix_3	Standard	0.14	10.667	30.000	28.40
2	2	synapt_cvb_quat_FIA_002	mix_4	Standard	0.13	14.670	62.000	62.12
3	3	synapt_cvb_quat_FIA_003	mix_5	Standard	0.13	23.788	125.000	138.92
4	4	synapt_cvb_quat_FIA_004	mix_6	Standard	0.12	34.971	250.000	233.11
5	5	synapt_cvb_quat_FIA_005	mix_7	Standard	0.14	66.021	500.000	494.65
6	6	synapt_cvb_quat_FIA_006	mix_8	Standard	0.12	99.339	750.000	775.28
7	7	synapt_cvb_quat_FIA_007	mix_9	Standard	0.12	124.179	1000.000	984.51
8	8	synapt_cvb_quat_FIA_008	vial 1 quaternary	/ Analyte				
9	9	synapt_cvb_quat_FIA_009	vial 2 quaternary	/ Analyte				
10	10	synapt_cvb_quat_FIA_010	vial 3 quaternary	/ Analyte				
11	11	synapt_cvb_quat_FIA_011	vial 4 quaternary	/ Analyte				
12	12	synapt_cvb_quat_FIA_012	vial 5 quaternary	/ Analyte				
13	13	synapt_cvb_quat_FIA_013	vial 6 quaternary	/ Analyte				
14	14	synapt_cvb_quat_FIA_014	vial 7 quaternary	/ Analyte				
15	15	synapt_cvb_quat_FIA_015	vial 8 quaternary	/ Analyte				
16	16	synapt_cvb_quat_FIA_016	vial 9 quaternary	/ Analyte				
17	17	synapt_cvb_quat_FIA_017	vial 10 quaterna	ry Analyte				
mix_8	rhoifolin 0.12	F1:TOF MS,ES- 577.1557 1.534e+003	Compound r Correlation c Calibration c	name: rhoifolin coefficient: r = 0 urve: 0.118723	.999006, r^2 = * x + 7.29502	0.998014		
100	99.34	1.33461003	Response ty Curve type: L	pe: External Sto inear, Origin: E	d, Area Exclude, Weight	iing: 1/x, Axis tra	ns: None	
-			-0.01 gesignal	× ×	×	×	×	
%- - -			نبر و 100	····	·····	····	τ····· ρ	g on column
	0.100 0.200	0.300 min	0- Resp	{× × ~~ × 200	400	600 8	,,,,,,,,,, р 00 1000	g on column

Figure S55. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Encoded message and decoded method: octal encoding scheme of the Flavonoids word using LC-MS as decoding method. The list of metabolites used to encode this message is given in Table S4. Analyte concentrations ranged from 50 to 1500 ppb to depict the 1 to 7 states.

Table S4

Text Flavonoids

Set of 27 metabolites used for text encoding

				octal encoding
	Compound	formula	[M-H]- ion (m/z)	vial1
1	5,7 dihydroxichromone	C9H6O4	177,0188	1
2	wogonoside	C22H20O11	459,0927	0
3	4-hydroxychalcone	C15H12O2	223,0759	6
4	silibinin	C25H22O10	237,0552	3
5	formononetin	C16H12O4	267,0657	3
6	rhoifolin	C27H30O14	577,1557	0
7	baicalein	C15H10O5	269,045	6
8	bavachin	C30H18O10	323,1283	0
9	naringenin	C15H12O5	271,0606	5
10	acacetin	C16H12O5	283,0606	6
11	scutellarein	C15H10O6	285,0399	6
12	eriodictyol	C15H12O6	287,0556	3
13	epicatechin	C15H14O6	289,0712	3
14	tectorigenin	C16H12O6	299,0556	6
15	herbacetin	C15H10O7	301,0348	6
16	taxifolin	C15H12O7	303,0505	7
17	6-hydroxiflavone	C15H10O3	317,0297	1
18	neobavaisoflavone	C20H18O4	321,1127	5
19	amentoflavone	C20H20O4	323,1283	7
20	orientin	C21H20O11	447,0927	3
21	eupatilin	C18H16O7	343,0818	2
22	guayjaverin	C21H22O5	353,1389	2
23	morusin	C21H20O6	367,1182	6
24	colyfoil A	C19H18O8	373,0923	2
25	isoquercetin	C21H20O12	463,088	1
26	isoxanthohumol	C21H22O5	353,1389	6
27	baicalin	C21H18O11	445,0771	3

Quantify compound summary report for the word Flavonoids using an octal encoding scheme and LC-MS as decoding method

Figure S56. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Compound 2:	wogonoside						
	#	Name	Sample Text	RT	Area	Std. Conc	pg on column
1	1	<pre>scic_synapt_cvb_code_369</pre>	mix_1			15.000	
2	2	<pre>scic_synapt_cvb_code_370</pre>	mix_2	3.12	43.160	31.000	43.01
3	3	<pre>scic_synapt_cvb_code_371</pre>	mix_3	3.13	102.878	62.000	59.08
4	4	<pre>scic_synapt_cvb_code_372</pre>	mix_4	3.13	286.617	125.000	108.50
5	5	<pre>scic_synapt_cvb_code_373</pre>	mix_5	3.13	683.070	250.000	215.13
6	6	<pre>scic_synapt_cvb_code_374</pre>	mix_6	3.13	1744.272	500.000	500.57
7	7	<pre>scic_synapt_cvb_code_375</pre>	mix_7	3.13	3639.333	1000.000	1010.30
8	8	<pre>scic_synapt_cvb_code_386</pre>	octal_UPLC				
mix_6	wogonoside 3.13 1744.27	F1:TOF MS,ES- 459.0927 2.552e+004	Compound name: wo Correlation coefficien Calibration curve: 3.7 Response type: Exter Curve type: Linear, Or Unvertige 20.0 *	ogonoside t; r = 0.998252, 1779 * x + -116. anal Std, Area igin: Include, W	r^2 = 0.996506 754 eighting: Null, Axis	trans: None	n column
0-1	3.000 3.200	3.400 min	2500- -0 2	200 400			n column

Figure S57. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S58. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S59. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S60. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S61. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S62. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S63. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S64. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S65. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S66. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S67. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S68. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S69. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S70. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S71. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S72. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S73. Compound summary report, illustrative trace and calibration curve and residuals of rhoifolin.

Figure S74. Compound summary report, illustrative trace and calibration curve and residuals of amentoflavone.

Figure S75. Compound summary report, illustrative trace and calibration curve and residuals of orientin.

Figure S76. Compound summary report, illustrative trace and calibration curve and residuals of eupatilin.

Figure S77 Compound summary report, illustrative trace and calibration curve and residuals of guayjaverin.

Figure S78. Compound summary report, illustrative trace and calibration curve and residuals of morusin.

Figure S79. Compound summary report, illustrative trace and calibration curve and residuals of corylifol A.

Figure S80. Compound summary report, illustrative trace and calibration curve and residuals of isoquercetin.

Figure S81. Compound summary report, illustrative trace and calibration curve and residuals of isoxanthohumol.

Figure S82. Compound summary report, illustrative trace and calibration curve and residuals of baicalin.

SI_1.7 Python scripts and MATLAB procedure for message retrieval

Python scripts for retrieval of binary-encoded abstract information

This Python script processes chemical mixture data to extract and binary-encode peak area information associated with specific compounds. It begins by reading an Excel file without predefined headers, dynamically identifying the location of the keyword "Compound", and subsequently extracting the list of compound names located beneath this label. It then parses a structured text file—generated as an output from automated TargetLynx processing—to locate and isolate blocks of data corresponding to each compound.

Within each block, only lines containing the term "vial" are considered, from which numeric peak area values are extracted. The script ensures a uniform vector of five values per compound, padding with zeros where necessary. These peak areas are then binarized according to a predefined threshold (values > 50 are encoded as "1", otherwise "0").

The resulting binary vectors are compiled into an output table and subsequently used to generate ASCII characters via 8-bit binary-to-character conversion. This is performed column-wise (per vial), and the resulting substrings are concatenated to construct a final decoded message, representing the presence or absence of compounds in a binary-encoded form.

File paths for both input and output files are fully customizable, rendering the script adaptable to a variety of experimental datasets.

The script employs the following Python libraries:

- pandas: For data manipulation and Excel file handling.
- openpyxl: Backend engine for reading .xlsx files using pandas.
- re: For regular expression-based pattern matching and text extraction.

Python scripts for retrieval of quaternary-encoded abstract information

This Python script processes quaternary-encoded data in chemical mixtures by classifying compound concentrations into discrete levels and generating corresponding visual representations. It begins by parsing an Excel file lacking predefined headers, in which it dynamically locates the cell containing the keyword "Compound" and extracts the list of compound names found beneath it.

Subsequently, the script reads a text file generated after automated processing and quantitation using TargetLynx, from which it isolates compound-specific data blocks. Within each block, only entries labeled as Analyte are selected, and their associated numeric values—corresponding to vial-specific concentration levels—are extracted. The script ensures that each compound is represented by a consistent set of ten vial values, padding with zeros when necessary.

Each concentration value is then classified into one of four predefined intensity categories (quaternary encoding: 0 to 3), based on empirically determined thresholds. These categorized values are stored in a

structured output table and used to construct a color-coded heatmap, which visually summarizes the quaternary-encoded dataset.

Two heatmap images are generated: one that preserves the raw matrix orientation and another that is rotated and flipped for improved visual interpretation. This dual-output format facilitates the inspection of encoded chemical mixture profiles and enhances compatibility with various hyphenated mass spectrometry platforms operating under different quantitation regimes. All file paths are user-configurable, allowing straightforward adaptation of the script to alternative experimental datasets.

The script employs the following Python libraries:

- pandas: For structured data handling and Excel file processing.
- openpyxl: Required by pandas to interface with .xlsx file formats.
- re: For compound-specific block identification via regular expressions.
- numpy: For numerical array manipulation and image matrix construction.
- PIL (Python Imaging Library): For image creation and export of heatmaps.

Python scripts for retrieval of octal-encoded abstract information

This Python script processes chemical mixture data to retrieve octal-encoded information mapped to specific compounds. It begins by reading an Excel file without predefined headers and dynamically locating the column containing the keyword "Compound", from which the list of compound names is extracted. Subsequently, a text file—generated following automated processing and quantitation via TargetLynx—is parsed to isolate data blocks corresponding to each compound.

Within each block, the script searches for lines labeled as octal_UPLC, from which it extracts a single vialspecific concentration value per compound. These values are then categorized into eight predefined intensity levels (0 to 7), according to empirically determined thresholds. The resulting classification is stored in a structured output table, providing an octal-encoded fingerprint for each compound.

Finally, the script converts the octal values into a binary bitstream (each category represented as 3 bits), trims or aligns the bitstream as needed (e.g., reducing 81 bits to 80), and groups the bits into bytes. These bytes are then decoded into ASCII characters to reconstruct a hidden textual message encoded in the concentration data.

All file paths are customizable, allowing the script to be easily adapted for various datasets and analytical contexts.

The script uses the following Python libraries:

- pandas: For structured data manipulation and Excel handling.
- openpyxl: Backend engine for reading .xlsx files using pandas.
- re: For identifying and extracting compound-specific text blocks.
- numpy: For array manipulation and bit-level operations.

All Python decoding scripts and supplementary examples are available in the following GitHub repository: https://github.com/catm542-ai/ChemDataProcessor

Procedure of MATLAB for image encoding, storage, retrieval, and reconstitution:

%% multicoloured image encoding

clearvars; % remove all image variables

close all; %

I = imread('UJIim.png'); % read the RGB image

R = I(:,:,1); % R component of the RGB image

G = I(:,:,2); % G component of the RGB image

B = I(:,:,3); % B component of the RGB image

S = R/255+2*(G/255)+3*(B/255); % Matrix with variable 0, black (background), 1, red (U), % 2, green (J) and 3, blue (I).

S2 = imresize(S,1/8,'nearest'); % matrix scaling

xlswrite('UJI.xls',S2); % matrix output in the .xls format

%% image reconstitution

% an RGB image is reconstructed to a .png format from a .xls file that contains a matrix % with the 0, 1, 2, 3 values previously decoded both from FIA-MS or LC-MS methods clearvars;

close all;

M = xlsread('UJI.xls'); % data reading

I(:,:,1) = 255*(M==1); % R component of the RGB image I(:,:,2) = 255*(M==2); % G component of the RGB image I(:,:,3) = 255*(M==3); % B component of the RGB image Ir = imresize(I,8,'nearest'); % matrix scaling imwrite(Ir, 'UJIrec.png')

References

- J. K. Rosenstein, C. Rose, S. Reda, P. M. Weber, E. Kim, J. Sello, J. Geiser, E. Kennedy, C. Arcadia, A. Dombroski, K. Oakley, S. L. Chen, H. Tann and B. M. Rubenstein, *IEEE Trans. Nanobioscience*, 2020, **19**, 378–384.
- E. Kennedy, C. E. Arcadia, J. Geiser, P. M. Weber, C. Rose, B. M. Rubenstein and J. K. Rosenstein, *PLoS One*, 2019, 14, 1–12.
- C. E. Arcadia, E. Kennedy, J. Geiser, A. Dombroski, K. Oakley, S. L. Chen, L. Sprague, M. Ozmen,
 J. Sello, P. M. Weber, S. Reda, C. Rose, E. Kim, B. M. Rubenstein and J. K. Rosenstein, *Nat. Commun.*, DOI:10.1038/s41467-020-14455-1.
- 4 B. J. Cafferty, A. S. Ten, M. J. Fink, S. Morey, D. J. Preston, M. Mrksich and G. M. Whitesides, ACS Cent. Sci., 2019, 5, 911–916.
- 5 V. Pardi-Tóth, Á. Kuki, M. Á. Kordován, G. Róth, L. Nagy, M. Zsuga, T. Nagy and S. Kéki, *Sci. Rep.*, 2023, **13**, 1–7.
- 6 P. Bohn, M. P. Weisel, J. Wolfs and M. A. R. Meier, *Sci. Rep.*, 2022, **12**, 1–8.
- A. A. Nagarkar, S. E. Root, M. J. Fink, A. S. Ten, B. J. Cafferty, D. S. Richardson, M. Mrksich and
 G. M. Whitesides, *ACS Cent. Sci.*, 2021, 7, 1728–1735.
- 8 Y. Tang, C. He, X. Zheng, X. Chen and T. Gao, *Chem. Sci.*, 2020, **11**, 3096–3103.
- 9 T. Ratner, O. Reany and E. Keinan, *ChemPhysChem*, 2009, **10**, 3303–3309.
- 10 J. M. Lee, H. Jang, S. W. Lee and K. T. Kim, *JACS Au*, 2022, **2**, 2108–2118.
- 11 Z. Tong, S. Hou, Z. Zhang, Z. Liu and Y. Zhang, Sensors Actuators B Chem., 2025, 422, 136618.
- A. Durgbanshi, V. Arbona, O. Pozo, O. Miersch, J. V Sancho and A. Gómez-Cadenas, J. Agric. Food Chem., 2005, 53, 8437–8442.
- H. Chaaban, I. Ioannou, L. Chebil, M. Slimane, C. Gérardin, C. Paris, C. Charbonnel, L. Chekir and M. Ghoul, J. Food Process. Preserv., 2017, 41, e13203.
- A. Castañeda-Ovando, M. de L. Pacheco-Hernández, M. E. Páez-Hernández, J. A. Rodríguez and C.
 A. Galán-Vidal, *Food Chem.*, 2009, 113, 859–871.
- 15 S. C. Nanita and L. G. Kaldon, *Anal. Bioanal. Chem.*, 2016, **408**, 23–33.
- 16 A. Furey, M. Moriarty, V. Bane, B. Kinsella and M. Lehane, *Talanta*, 2013, **115**, 104–122.