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Section S1: Material and Methods

S1.1: Raman spectral acquisition

The LR spectrometer possesses an approximate resolution of 31 cm?, featuring a grating with
150 lines per millimeter and incorporating a linear CCD array. The collection optics involved
an Integrated Photonics System optical fiber probe coupled to a 785 nm laser (model:
I0785SP100-T040S). The Raman probe has a central fiber for light input and is surrounded by
six fiber endings to collect the scattered light. A ball lens is mounted to focus the light into the
sample and collect the reflected light. The focal length of this probe is 4 mm. Raman spectra
were acquired from aspirin, ibuprofen, paracetamol, ranitidine, 4-MBA, and 4-NTP.
Approximately 400 Raman spectra were collected from each sample at different positions to
account for spectral variability. Another set of high-resolution spectra was collected using the
high-resolution Andor spectrophotometer (HR spectrometer) (Kymera 328i, with quad turret,
328 mm focal length, F/4.1 aperture having CCD camera with resolution < 1 cm%, grating 1800
lines/mm) with similar acquisition setting, i.e., using a 785 nm laser with acquisition time of
15 s and three accumulations, and 1800 lines/mm grating system. All Raman spectra were
calibrated against the first-order silicon phonon mode at 520.7 cm™ to ensure alignment of
the wavenumber axis across both low-resolution and high-resolution datasets. The calibration
accuracy was within 1 cm™, which is negligible compared to the spectral resolution difference
between instruments (31 cm™). This calibration step ensured that GAN training was not
affected by systematic shifts in peak positions, thereby preserving the fidelity of spectral
reconstruction. We also accumulated 400 Raman spectra from each sample using the HR
spectrometer. A series of spectra were recorded from each sample to create a comprehensive
dataset for training the GAN. Care was taken to minimize external interferences, and all
measurements were conducted in a controlled environment to maintain consistency. We have
accumulated the spectrum from 200 nm to 1650 nm with 862 wavenumber points in between.

All the spectra were first normalized and used as input for the ML model.
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S$1.2: Model builder for GAN

The GAN model employed in this study consisted of a generator network built upon the U-Net
architecture with eight blocks, each comprising convolutional layers, instance normalization
layers, LeakyRelLU layers, and tanh activation functions.! Low-resolution spectra collected with
an integration time of 15 s using an LR spectrometer were used as the input data for the
generator. The generator network consists of multiple convolutional layers designed to
capture the most valuable features and spatial hierarchies in the input data. It is a combination
of an encoder and a decoder structure containing skip connection layers. The generator is
crucial in transforming low-resolution Raman spectra into their high-resolution counterparts.?
Since the generator is a U-Net-based design, it first down-samples all the information from
the low-resolution Raman spectra to lower dimensional space through convolutional layers.
Once the network extracts these valuable features, it starts upscaling and rebuilds the fully
resolved high-resolution Raman spectra using extracted features. The discriminator is a five-
block network and is composed of convolutional layers aimed at discerning between the real
and the generated data. It also employs layers of convolutional, batch normalization, and
Leaky ReLU. All convolutional layers utilize 4x1 spatial filters applied with a stride of size 2.
The output layer of the generator and discriminator has 1x1 spatial filters applied with a stride
of size 1, followed by the Tanh activation function for the generator and the sigmoid activation
function for the discriminator. While the core structure of the GAN follows conventional GAN
architectures, our approach lies in the specific application to Raman spectral data. We have
optimized the network design for spectral resolution enhancement, tailoring convolutional
layers to capture the unique features of low-resolution Raman spectra and optimized training
parameters to ensure rapid convergence and high-resolution spectral generation.

Training parameters such as the learning rate, batch size, and epochs were carefully selected
to optimize model performance. The model is trained over multiple epochs and tries to
optimize the losses. The adversarial training process involved a competitive interplay between
the generator and discriminator, with the former generating spectra to deceive the latter and

the discriminator evolving to discern true high-resolution spectra. The rigorous evaluation
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included generalization of performance on unseen spectra, quantitative metrics like SNR,
spectral resolution, and peak intensity, and comparative analyses against spectra obtained

directly from a high-resolution Raman spectrophotometer.

To train the GAN model, we employed a supervised learning strategy by partitioning the
complete dataset of 2400 Raman spectra into three distinct subsets. Specifically, 70% of the
data (1680 spectra) was allocated for training, enabling the model to learn the mapping
between low-resolution and high-resolution spectral domains. To optimize the learning
process and prevent overfitting, 15% of the data (360 spectra) was reserved as a validation
set and used to monitor model performance during training iterations. Once training was
complete, the remaining 15% (360 spectra) was utilized as an independent test set to evaluate
the generalization capability of the model on previously unseen spectral inputs. During the
training process, the model tries to adjust its weight and biases in the layer, as well as these
losses from both the generator and the discriminator. The loss function, Lsfrom the generator
network, measures how significantly the generator can deceive the discriminator network.
The generator aims to minimize this loss (L) during the training process to effectively generate
outputs indistinguishable from real high-resolution spectra. The loss function, Lp, from the
discriminator network measures the discriminator's ability to classify between real and
generated spectra. The discriminator aims to maximize this loss (Lp), improving its capability
to differentiate between real and generated data. The parameters G and D in the loss
functions represent the weights and biases, which are iteratively updated during training to
improve the efficiency accuracy for the generator and discriminator network, respectively. The
interplay between Ls and Lp creates a dynamic training process where the generator and
discriminator compete to continuously improve in a zero-sum game framework.

The loss functions in the GAN model come from both generator (Ls) and discriminator (Lp) and

were defined as?
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Lg = % Z:ﬂ(D(G(s"),s") — 1?2+ 2|IG(s™) — x"||1

1 N
Lp =1 zn=1(D(xn'sn) — 12+ (D(G(s™),sM)

Where a high-resolution spectrum is denoted as x” and a corresponding low-resolution
spectrum is denoted as s”, N is the number of training spectra. The hyperparameter A was
introduced to control the magnitude of the L1 norm, a metric used to quantify the dissimilarity
between vectors.? L1 norm was chosen to improve the SNR of the processed spectra. To train
our model, we employed the Adam optimization algorithm over 177 epochs, with a learning
rate of 0.0001 and an effective batch size of one.? These parameters were selected to optimize
the model's performance in reconstructing high-resolution spectra from their low-resolution
counterparts.

Due to the architectural complexity of the proposed GAN model comprising a deep
convolutional generator and discriminator with a large number of trainable parameters, the
training process is computationally intensive. The model was trained over approximately 164
hours on a high-performance computing (HPC) cluster utilizing two parallel GPU nodes, each
equipped with NVIDIA A100 GPUs (40 GB VRAM) and 2x Intel Xeon Platinum 8358 CPUs (32
cores, 2.6 GHz, 8 CPUs). However, once the training phase is completed, the model
demonstrates high inference efficiency. Specifically, it requires only ~88 milliseconds to
generate a high-resolution Raman spectrum from a single low-resolution input of array size
862x1. Furthermore, the inference time scales linearly with the input array size, making the

model well-suited for real-time or high-throughput spectral enhancement applications.
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S1.3: Classification of GAN-generated spectra using Artificial Neural Network
(ANN)

We employed an ANN architecture to classify the generated data and tuned the
hyperparameters such as layer size, number of hidden neurons in each layer, and training
function. The best classification model after optimization of the parameters is the ANN
comprised of four layers: an input layer, two hidden layers with 17 and 18 neurons,
respectively, and an output classification layer with six nodes corresponding to the categories
of the samples (Figure S1). The evaluation of the individual models is given in Table S2. The
ANN model in this study utilized the Bayesian regularization backpropagation algorithm for
training, which iteratively updates the weights and biases based on the Levenberg-Marquardt
optimization.* Specifically, we employed the 'trainbr' function and assessed network

performance using cross-entropy error and misclassification error metrics.>®

Cross-entropy loss, also known as log loss, measures the performance of a classification model
whose output is a probability value between 0 and 1. The cross-entropy loss increases as the
predicted probability diverges from the actual label. In essence, it quantifies the difference
between two probability distributions—the true labels and the predicted probabilities. For

single-label classification, the cross-entropy loss is calculated as:

L&
loss = _NZZ T;cInY;,

i=1 c=1
Where N is the number of samples, Ti is the binary indicator (0 or 1) that corresponds to
whether the class label ¢ is the correct classification for the i sample, and Y is the predicted
probability of the /" sample being in class c. The misclassification error metric measures the
proportion of incorrect predictions made by the model, i.e., it calculates the ratio of the
number of incorrect predictions to the total number of predictions and is given by the

following equation:
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Where N is the total number of samples, ), is the predicted label, and y; is the true label for
the it sample.

During the training state of the ANN model, we set the minimum performance gradient to 1 x
e-6 and the maximum validation failure to 6. This means that if the performance of the model
does not change by a margin of 1 x e-6 for six successive epochs, training will stop immediately.
Upon satisfying these convergence criteria, the model is considered fully trained and ready
for testing and validation. To ensure the reliability of our classification model, we conducted a
3-fold validation process by randomly partitioning the dataset into training, testing, and
validation subsets. The input data was normalized, and no additional preprocessing steps were
applied to promote the generalization of the model. Since we have a substantial dataset, we
utilized the entire Raman spectrum without augmentation for both training and testing. High-
resolution data was used to train the model. Once the model was trained, it was further tested
on the generated high-resolution dataset to assess its performance. The model optimization
was based on minimizing mean square error (MSE) and maximizing the coefficient of
correlation (R). Convergence criteria for the model were determined by monitoring changes
in MSE and R over successive iterations, with the training concluding once a predefined
threshold was reached and remained unchanged for a specified number of iterations. The
results were further analyzed through visualization techniques, such as confusion matrices
and receiver operating characteristic (ROC) curves. Lastly, MATLAB scripts were generated to
replicate the results and enable customization of the training process, ensuring reproducibility

and flexibility in future experiments.

The MSE for the classification model was calculated as follows:

n
1
MSE = — Z(Xl- - X
n i=1
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Wherein n is the number of total observations, X; is the true class of the sample, and )?l is the

class of the sample predicted by the model.

Although classifiers such as Support Vector Machine (SVM), k-nearest Neighbours (k-NN),
Random Forest (RF), and Gradient Boosting Machines (GBM) can be used, the ANN method
was opted over others because of the complex non-linear relationships inherent in Raman
spectra, which might be challenging for linear models. ANNs can automatically learn features
from raw data, reducing the need for manual feature extraction.” Beyond classification
accuracy, efforts were made for post-training interpretability, employing feature analysis and
visualization techniques to gain insights into the distinctive spectral attributes defining
different sample categories. For the visualization of different categories of samples, we first
used Principal Component Analysis (PCA) to reduce the data from higher to lower dimensions.
After that, the scores obtained from the PCA were directly incorporated into the Radial

Visualization (RadViz) in Orange software.

S1.4: Identification of the generated spectra of organic compounds via
spectral barcoding

To enable compound classification and automated identification, we adopted the concept of
Raman barcoding for the analyte molecules. A comprehensive Raman spectral barcode library
was initially constructed using the experimentally obtained Raman spectra from the HR
spectrometer. The high-resolution Raman spectra obtained were processed in such a way that
all information regarding peak position and full-width half maxima (FWHM) was integrated
into the form of barcodes. The thickness and position of vertical lines are directly related to
the spectral peak position and FWHM, respectively. An in-house MATLAB script was developed
to preprocess the high-resolution spectra into their respective barcodes. Initially, spectral
normalization was performed within the intensity range of 0 to 1. Subsequently, a peak
searching algorithm identifies peaks in the Raman spectrum based on peak prominence using

the "findpeaks" function. Raman barcodes were employed to verify the identity of the
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unknown sample through barcode comparison. We opted for the Structural Similarity Index
(SSIM) method to measure the similarity between two barcodes. The significance of SSIM lies
in its ability to provide a more accurate and human-perceptual measure of image similarity,
making it particularly useful in fields such as image processing, computer vision, and remote
sensing. SSIM provides a robust and perceptually relevant measure of image similarity,
leveraging the structural information within images to offer a meaningful comparison metric.
SSIM compares two images, I and I’, by considering three components: luminance (l), contrast

(c), and structure (s). The SSIM index is calculated using the following formula:®

SSIM(L, 1Y = [I(I,IN]* - [c(1, 1)) - [s(UI, 1N]Y

If a significant portion of the barcode signature of the unknown sample matched with the
barcode spectrum from the library, i.e., X, then the unknown sample was identified as X. The
threshold percentage of the unknown sample barcode spectrum required for identification is
referred to as the percentage match criterion. Subsequently, low-resolution Raman spectra
were fed into a GAN model to generate high-resolution spectral outputs. These generated
spectra were then encoded into Raman barcodes and compared against the spectral library to
determine the similarity, quantified as a percentage match between the unknown sample's
Raman barcode and those in the library. Upon scanning the entire library, the model identified

the top-scoring profiles, thereby providing the identity of the unknown sample.

If a significant portion of the barcode signature of the unknown sample matched with the
barcode spectrum from the library, i.e., X, then the unknown sample was identified as X. The
threshold percentage of the unknown sample barcode spectrum required for identification is
referred to as the percentage match criterion. Subsequently, low-resolution Raman spectra
were fed into a GAN model to generate high-resolution spectral outputs. These generated
spectra were then encoded into Raman barcodes and compared against the spectral library to

determine the similarity, quantified as a percentage match between the unknown sample's
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Raman barcode and those in the library. Upon scanning the entire library, the model identified

the top-scoring profiles, thereby providing the identity of the unknown sample.

S1.5: Calculating of Signal-to-Noise Ratio

The SNR for the low, high, and generated high-resolution Raman spectra were calculated by
the formula below:°

Raman Peak Intensity
SNR

~ Standard deviation of background noise

SNR (dB) = 10log,,(SNR)

S1.6: Process of making Raman spectral barcode

For the barcoding process, we employed the "findpeaks" function in MATLAB, utilizing a peak
prominence threshold set at 0.3, indicating that peaks with an SNR of 0.3 or higher are
considered valid peaks within the Raman spectrum, discernible from the background noise.
Once all peaks within the Raman spectrum and their FWHM values were identified and
labeled, an in-house MATLAB algorithm was developed to fetch this information and integrate
it into constructing the Raman barcode. Since Raman is a very sensitive technique for the
detection of a sample, and every sample has a distinct Raman fingerprint region, the Raman
barcode will be a unique identity that is assigned to the sample on the basis of Raman spectra.
Consequently, each barcode encapsulates specific information unique to each sample,
facilitating streamlined identification of unknown samples. We have created a spectral
barcode library using high-resolution Raman spectra obtained from a high-resolution
spectrometer. Given that the GAN has successfully transformed low-resolution Raman spectra
into their high-resolution equivalents. The identifier then uses these generated high-
resolution spectra to extract the FWHM and peak positions, converting them into Raman
barcodes. These barcodes are subsequently scanned against the Raman spectral barcode

library, and the resulting matrix represents the percentage similarity index. We use the built-
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in MATLAB function 'SSIM' to calculate the similarity index of the barcode from an unknown

sample against the spectral library.

Table S1: Raman band assignment of different samples: aspirin, ibuprofen, PCM, ranitidine, 4-

MBA, and 4-NTP, 1011121314

Raman Shift (cm?) Raman band assignment
1030 Aromatic rings
1200 -OH group substitution
1300 C-C bond
1600 C=0 stretching
700-830 y C-H
1231 C-Cring stretching
858 Ring breathing
791 CNC ring stretching
1319 Amide Il
1558 Amide Il N-H in plane deformation
1607 skeletal aryl C-C ring stretching
1644 Amide |
841 out-of-plane C-H bending
1441, 1472 aryl C-C stretch
1511 aryl C-H symmetric bends
1587 NO; asymmetric stretching
1554, 1408 NO; symmetric stretching
1483, 1376 C-N symmetric stretching
1450 C-C symmetric stretching
1306 C-H in-plane bending
1263, 1248 C-H out of plane bending




Table S2: The model optimization table for various parameters.

Model Training Hidden Test Loss | Model Training Hidden Test Loss
No. Function Neurons No. Function Neurons

1 trainlm [6] 0.025981 | 45 trainlm [8, 19] 0.02637
2 trainlm [3, 6] 0.028332 | 46 trainlm [8, 20] 0.027906
3 trainlm (4, 6] 0.026843 | 47 trainlm [9, 10] 0.021962
4 trainlm [4, 10] 0.029288 | 48 trainlm [9, 11] 0.021414
5 trainlm (4, 11] 0.029144 | 49 trainlm [9, 13] 0.023985
6 trainlm [4,12] 0.023078 | 50 trainlm [9, 15] 0.023128
7 trainlm [4, 15] 0.029084 |51 trainlm [9, 16] 0.024728
8 trainlm [5, 10] 0.026997 | 52 trainlm [9, 17] 0.027728
9 trainlm [5, 11] 0.024478 | 53 trainlm [9, 18] 0.023069
10 trainlm [5,12] 0.023113 | 54 trainlm [9, 19] 0.022849
11 trainlm [5, 13] 0.02859 55 trainlm [10, 14] 0.029717
12 trainlm [5, 14] 0.027967 | 56 trainlm [10, 15] 0.026676
13 trainlm [5, 16] 0.029415 | 57 trainlm [10,17] 0.029091
14 trainlm [5, 18] 0.024838 | 58 trainlm [10, 20] 0.01982
15 trainlm [5,19] 0.027732 | 59 trainlm [11, 14] 0.023211
16 trainlm [5, 20] 0.028819 | 60 trainlm [11, 15] 0.025901
17 trainlm [6, 7] 0.02589 61 trainlm [11, 16] 0.022485
18 trainlm [6, 9] 0.025331 | 62 trainlm [11, 17] 0.024967
19 trainim [6, 10] 0.022424 | 63 trainim [11, 18] 0.027611
20 trainlm [6, 11] 0.022461 | 64 trainlm [11, 19] 0.025603
21 trainlm [6, 12] 0.022132 |} 65 trainlm [11, 20] 0.027897
22 trainlm [6, 13] 0.02589 66 trainlm [12, 14] 0.022319
23 trainlm [6, 14] 0.02808 67 trainlm [12, 16] 0.019906
24 trainlm [6, 15] 0.021693 | 68 trainlm [12, 17] 0.026521
25 trainlm [6, 16] 0.021657 j 69 trainlm [12, 18] 0.022467
26 trainlm [6, 17] 0.024102 § 70 trainlm [12, 19] 0.022086
27 trainlm [6, 18] 0.028086 71 trainlm [13, 16] 0.027623
28 trainlm [6, 19] 0.02007 72 trainlm [13, 17] 0.024226
29 trainlm [6, 20] 0.018801 [ 73 trainlm [13, 20] 0.029899
30 trainlm [7, 9] 0.024369 | 74 trainlm [14, 15] 0.029871
31 trainlm [7,10] 0.022259 | 75 trainlm [14, 16] 0.018615
32 trainlm [7,11] 0.027534 | 76 trainlm [14,17] 0.026844
33 trainlm [7,12] 0.023687 | 77 trainlm [15, 16] 0.026204
34 trainlm [7, 13] 0.024874 | 78 trainlm [15, 17] 0.025169
35 trainlm [7, 14] 0.024143 | 79 trainlm [16, 18] 0.019279
36 trainlm [7, 16] 0.025499 | 80 trainlm [16, 20] 0.026439
37 trainlm [7, 18] 0.02622 81 trainlm [17, 18] 0.029288
38 trainlm [7, 19] 0.022173 | 82 trainlm [17, 20] 0.022176
39 trainlm [8, 9] 0.024886 | 83 trainlm [18, 19] 0.027043
40 trainlm [8, 10] 0.019097 | 84 trainlm [3, 4, 7] 0.024825
41 trainlm [8, 13] 0.025541 | 85 trainlm [3, 4, 20] 0.028591
42 trainlm [8, 14] 0.026174 | 86 trainlm [3, 5, 16] 0.029862
43 trainlm [8, 15] 0.028847 | 87 trainlm [3, 6, 17] 0.024444
44 trainlm [8, 17] 0.028759 | 88 trainlm [3,7,12] 0.027207




Model Training Hidden Test Loss | Model Training Hidden Test Loss
No. Function Neurons No. Function Neurons

89 trainlm [3,10,12] | 0.023092 | 133 trainlm [4,12,13] | 0.023064
90 trainlm [3, 11, 15] 0.028372 § 134 trainlm [4,12,14] | 0.021336
91 trainlm [3, 11, 18] 0.028773 § 135 trainlm [4,12,15] | 0.022402
92 trainlm [3,12,17] 0.029499 | 136 trainlm [4,12,16] | 0.023035
93 trainlm [3,13,20] |0.02803 | 137 trainlm [4,12,17] | 0.022225
94 trainlm [3, 14, 16] 0.029983 § 138 trainlm [4,12,18] | 0.027938
95 trainlm [3, 14, 19] 0.026622 § 139 trainlm [4,12,19] | 0.027287
96 trainlm [3, 15, 16] 0.028687 § 140 trainlm [4,12,20] | 0.022275
97 trainlm [3, 16, 17] 0.02784 141 trainlm [4, 13,14] | 0.02507
98 trainlm [3, 18, 20] 0.027252 | 142 trainlm [4, 13,20] | 0.021553
99 trainlm [3, 19, 20] 0.026676 | 143 trainlm [4,14,16] | 0.026146
100 trainlm [4,5,9] 0.027233 | 144 trainlm [4,14,17] | 0.024048
101 trainlm (4,5, 15] 0.022009 | 145 trainlm (4, 14,18] | 0.021127
102 trainlm 4,5, 17] 0.021853 | 146 trainlm [4, 14, 20] | 0.023905
103 trainlm (4,5, 20] 0.021913 | 147 trainlm [4,15,17] | 0.023299
104 trainlm [4,6,7] 0.028072 | 148 trainlm [4,15,18] | 0.026942
105 trainlm (4,6, 11] 0.029618 | 149 trainlm [4,15,19] | 0.025296
106 trainlm [4,6,12] 0.024806 [ 150 trainlm [4, 15, 20] | 0.026287
107 trainlm (4, 6, 16] 0.028125 | 151 trainlm [4,16,17] | 0.028423
108 trainlm (4, 6, 18] 0.027009 | 152 trainlm [4,16,18] | 0.022115
109 trainlm (4,7, 8] 0.024657 | 153 trainlm [4,16,19] | 0.020908
110 trainlm [4,7,9] 0.02925 154 trainlm (4, 16,20] | 0.021028
111 trainlm [4, 7,10] 0.027788 | 155 trainlm [4,17,20] | 0.024154
112 trainlm [4,7,11] 0.026738 | 156 trainlm [4,18,19] | 0.019465
113 trainlm 4, 7,13] 0.028909 | 157 trainlm [4,19,20] | 0.020579
114 trainlm (4,7, 18] 0.023425 | 158 trainlm [5, 6, 8] 0.026558
115 trainlm [4, 8, 11] 0.022378 [ 159 trainlm [5, 6, 11] 0.028853
116 trainim [4,8,12] 0.025057 | 160 trainim [5,6,12] | 0.019281
117 trainlm (4, 8, 14] 0.028675 | 161 trainlm [5, 6, 13] 0.021773
118 trainlm [4, 8, 15] 0.027409 | 162 trainlm [5, 6, 18] 0.024057
119 trainlm [4, 8, 18] 0.025703 | 163 trainlm [5, 7, 8] 0.029874
120 trainlm [4,9,11] 0.024389 | 164 trainlm [5,7,9] 0.026643
121 trainlm [4,9,12] 0.029705 | 165 trainlm [5,7,12] 0.019883
122 trainlm (4,9, 14] 0.02381 166 trainlm [5, 7, 14] 0.027047
123 trainlm (4,9, 15] 0.023733 | 167 trainlm [5, 7, 15] 0.025317
124 trainlm (4,9, 16] 0.026554 | 168 trainlm [5, 7, 16] 0.025411
125 trainlm (4,9, 18] 0.025992 | 169 trainlm [5,7,17] 0.029508
126 trainlm 4,9, 19] 0.025909 [ 170 trainlm [5, 7, 18] 0.028147
127 trainlm [4, 10, 15] 0.019944 | 171 trainlm [5, 7, 20] 0.02521
128 trainlm [4, 10, 20] 0.028791 | 172 trainlm [5, 8, 9] 0.01958
129 trainlm 4,11, 13] 0.027324 | 173 trainlm [5, 8, 11] 0.025317
130 trainlm [4, 11, 16] 0.02285 174 trainlm [5, 8, 14] 0.028328
131 trainlm [4, 11, 17] 0.02681 175 trainlm [5, 8, 16] 0.025291
132 trainlm [4, 11, 20] 0.024606 [ 176 trainlm [5, 8, 17] 0.028868

S-14




Model Training Hidden Test Loss | Model Training Hidden Test Loss
No. Function Neurons No. Function Neurons

177 trainlm [5, 8, 18] 0.024276 | 221 trainlm [5,17,19] | 0.022788
178 trainlm [5, 8, 19] 0.024267 | 222 trainlm [5,17,20] | 0.025473
179 trainlm [5, 8, 20] 0.026215 § 223 trainlm [5,18,19] | 0.029239
180 trainlm [5, 9, 10] 0.023812 | 224 trainlm [6,7,9] 0.02589
181 trainlm [5, 9, 13] 0.027888 | 225 trainlm [6,7,11] 0.019419
182 trainlm [5, 9, 15] 0.026313 § 226 trainlm [6,7,12] 0.025502
183 trainlm (5,9, 17] 0.020138 | 227 trainlm [6, 7, 13] 0.019197
184 trainlm (5,9, 19] 0.022191 | 228 trainlm (6, 7, 14] 0.028957
185 trainlm [5, 9, 20] 0.026173 | 229 trainlm [6, 7, 15] 0.02706
186 trainlm [5, 10, 11] 0.028822 [ 230 trainlm [6, 7, 16] 0.027207
187 trainlm [5, 10, 13] 0.022384 | 231 trainlm [6, 7, 20] 0.023248
188 trainlm [5, 10, 14] 0.029394 | 232 trainlm [6, 8, 13] 0.027517
189 trainlm [5, 10, 16] 0.027266 | 233 trainlm (6, 8, 14] 0.022826
190 trainlm [5, 10, 17] 0.02577 234 trainlm [6, 8, 15] 0.025366
191 trainlm [5, 10, 18] 0.026393 | 235 trainlm [6, 8, 16] 0.028407
192 trainlm [5, 10, 19] 0.025652 [ 236 trainlm (6, 8, 17] 0.026367
193 trainlm [5, 10, 20] 0.026157 | 237 trainlm [6, 8, 20] 0.022482
194 trainlm (5,11, 12] 0.02386 238 trainlm [6, 9, 10] 0.020926
195 trainlm (5,11, 14] 0.022098 [ 239 trainlm (6,9, 11] 0.020374
196 trainlm [5, 11, 15] 0.029555 | 240 trainlm (6,9, 12] 0.022418
197 trainlm [5, 11, 16] 0.020461 | 241 trainlm (6,9, 13] 0.021767
198 trainlm [5,11,17] 0.020628 | 242 trainlm [6, 9, 14] 0.026815
199 trainlm [5, 11, 19] 0.024751 | 243 trainlm [6,9, 15] 0.028121
200 trainlm [5, 12, 14] 0.025937 | 244 trainlm [6,9,17] 0.022267
201 trainlm [5, 12, 15] 0.01989 245 trainlm [6, 9, 18] 0.024894
202 trainlm [5,12, 18] 0.026095 | 246 trainlm [6, 9, 19] 0.028824
203 trainlm [5, 12, 19] 0.028442 | 247 trainlm [6, 9, 20] 0.021732
204 trainlm [5,12,20] | 0.020484 | 248 trainlm [6,10,11] | 0.028234
205 trainlm [5, 13, 16] 0.028746 | 249 trainlm [6,10,12] | 0.019828
206 trainlm [5, 13, 17] 0.025889 [ 250 trainlm [6,10,14] | 0.025194
207 trainlm [5, 13, 19] 0.025197 | 251 trainlm [6,10,17] | 0.025453
208 trainlm [5, 14, 15] 0.022911 | 252 trainlm [6,10,18] | 0.025026
209 trainlm [5, 14, 16] 0.025035 | 253 trainlm [6,10,20] | 0.020242
210 trainlm [5, 14, 17] 0.023382 | 254 trainlm [6,11,12] | 0.027642
211 trainlm [5, 14, 18] 0.023999 | 255 trainlm [6,11, 14] | 0.02275
212 trainlm [5, 14, 19] 0.023317 [ 256 trainlm [6,11,15] | 0.024734
213 trainlm [5, 14, 20] 0.027769 | 257 trainlm [6,11,16] | 0.026935
214 trainlm [5, 15, 16] 0.025336 | 258 trainlm [6,11,17] | 0.026464
215 trainlm [5, 15, 17] 0.017589 | 259 trainlm [6,11,19] | 0.025969
216 trainlm [5, 15, 18] 0.029869 [ 260 trainlm [6,12,13] | 0.020462
217 trainlm [5, 15, 19] 0.021986 | 261 trainlm [6,12,15] | 0.024411
218 trainlm [5, 16, 17] 0.026385 | 262 trainlm [6,12,16] | 0.020253
219 trainlm [5, 16, 19] 0.025829 | 263 trainlm [6,12,17] | 0.027938
220 trainlm [5, 16, 20] 0.020876 | 264 trainlm [6,12,19] | 0.029521




Model Training Hidden Test Loss | Model Training Hidden Test Loss
No. Function Neurons No. Function Neurons

265 trainlm [6, 12, 20] 0.01787 309 trainlm [7,11,14] | 0.020266
266 trainlm [6,13,14] | 0.021036 | 310 trainlm [7,11,15] | 0.021781
267 trainlm [6,13,17] | 0.02246 | 311 trainlm [7,11,16] | 0.022872
268 trainlm [6, 13, 18] 0.020947 | 312 trainlm [7,11,17] | 0.022325
269 trainlm [6, 13, 19] 0.022918 313 trainlm [7,11,18] | 0.017691
270 trainlm [6,13,20] | 0.023887 | 314 trainlm [7,11,20] | 0.024701
271 trainlm [6,14,15] | 0.016728 | 315 trainlm [7,12,13] | 0.022607
272 trainlm [6, 14, 17] 0.019388 316 trainlm [7,12,14] | 0.025172
273 trainlm [6, 14, 18] 0.028385 § 317 trainlm [7,12,17] | 0.021569
274 trainlm [6, 15, 16] 0.029194 318 trainlm [7,12,18] | 0.021456
275 trainlm [6, 15, 17] 0.028094 [ 319 trainlm [7,12,19] | 0.020822
276 trainlm [6, 15, 18] 0.018153 [ 320 trainlm [7,12,20] | 0.027649
277 trainlm [6, 15, 19] 0.017323 | 321 trainlm [7,13,15] | 0.02543
278 trainlm [6, 16, 18] 0.021136 | 322 trainlm [7,13,16] | 0.025565
279 trainlm [6, 16, 19] 0.019058 | 323 trainlm [7,13,17] | 0.021566
280 trainlm [6, 16, 20] 0.027041 | 324 trainlm [7,13,19] | 0.029497
281 trainlm [6,17, 18] 0.02074 325 trainlm [7,13,20] | 0.017737
282 trainlm [6,17,19] 0.023886 [ 326 trainlm [7,14,15] | 0.029436
283 trainlm [6, 17, 20] 0.024397 | 327 trainlm [7,14,17] | 0.020334
284 trainlm [6, 19, 20] 0.021832 | 328 trainlm [7,14,19] | 0.024916
285 trainlm [7,8,9] 0.025043 | 329 trainlm [7,14,20] | 0.024732
286 trainlm [7, 8, 10] 0.02491 330 trainlm [7,15,16] | 0.023846
287 trainlm [7,8,11] 0.028189 | 331 trainlm [7,15,17] | 0.019015
288 trainlm [7,8,12] 0.022613 | 332 trainlm [7,15,18] | 0.028382
289 trainlm (7,8, 15] 0.02604 333 trainlm [7,15,19] | 0.027256
290 trainlm (7,8, 16] 0.029233 | 334 trainlm [7,15,20] | 0.018687
291 trainlm [7,8,17] 0.023669 | 335 trainlm [7,16,17] | 0.020564
292 trainlm [7,9,10] 0.025732 | 336 trainlm [7,16,18] | 0.02146
293 trainlm [7,9, 14] 0.026594 | 337 trainlm [7,16,19] | 0.019281
294 trainlm [7,9, 15] 0.027803 | 338 trainlm [7,16,20] | 0.025033
295 trainlm [7,9, 16] 0.018886 [ 339 trainlm [7,17,18] | 0.027956
296 trainlm [7,9, 18] 0.024837 | 340 trainlm [7,17,19] | 0.022673
297 trainlm [7,9,19] 0.021873 | 341 trainlm [7,17,20] | 0.022018
298 trainlm [7,9, 20] 0.020977 | 342 trainlm [7,18,19] | 0.021809
299 trainlm [7, 10, 11] 0.018921 | 343 trainlm [7,18,20] | 0.024642
300 trainlm [7, 10, 12] 0.019845 | 344 trainlm (8,9, 10] 0.020977
301 trainlm [7, 10, 13] 0.029102 | 345 trainlm (8,9, 13] 0.017213
302 trainlm [7, 10, 14] 0.026593 | 346 trainlm (8,9, 15] 0.026605
303 trainlm [7, 10, 16] 0.025991 | 347 trainlm (8,9, 16] 0.029001
304 trainlm [7, 10, 17] 0.025178 | 348 trainlm (8,9, 17] 0.020083
305 trainlm [7, 10, 18] 0.018749 | 349 trainlm (8,9, 18] 0.01756
306 trainlm [7, 10, 19] 0.022861 [ 350 trainlm (8,9, 19] 0.016675
307 trainlm [7, 10, 20] 0.021184 | 351 trainlm [8,10,11] | 0.021337
308 trainlm [7,11, 13] 0.028366 [ 352 trainlm [8,10,13] | 0.024706




Model | Training Hidden Test Loss | Model Training | Hidden Test Loss
No. Function Neurons No. Function | Neurons

353 trainlm [8, 10, 14] 0.022795 | 397 trainlm [9, 10, 13] 0.029775
354 trainlm (8, 10, 15] 0.025777 | 398 trainlm | [9, 10,14] | 0.02176
355 trainlm [8, 10, 16] 0.024821 399 trainlm [9, 10, 15] 0.018072
356 trainlm [8, 10, 17] 0.025039 | 400 trainlm [9, 10, 16] 0.027963
357 trainlm (8, 10, 18] 0.021865 | 401 trainlm | [9, 10,17] | 0.027865
358 trainlm [8, 10, 19] 0.023573 | 402 trainlm [9, 10, 18] 0.020186
359 trainlm [8, 10, 20] 0.02559 403 trainlm [9, 10, 19] 0.02074
360 trainlm (8,11, 12] 0.023049 | 404 trainlm [9, 10, 20] 0.021299
361 trainlm [8, 11, 14] 0.017586 | 405 trainlm [9, 11, 12] 0.029742
362 trainlm [8, 11, 15] 0.023202 | 406 trainlm [9, 11, 13] 0.021462
363 trainlm [8, 11, 16] 0.023724 | 407 trainlm [9, 11, 14] 0.023381
364 trainlm (8,11, 17] 0.025552 | 408 trainlm [9, 11, 15] 0.020893
365 trainlm [8, 11, 18] 0.02159 409 trainlm [9, 11, 16] 0.027505
366 trainlm (8,11, 19] 0.018616 [ 410 trainlm [9, 11, 19] 0.017625
367 trainlm [8,12,13] 0.022627 | 411 trainlm [9, 12, 14] 0.029556
368 trainlm (8,12, 14] 0.022852 | 412 trainlm [9, 12, 15] 0.019361
369 trainlm (8,12, 16] 0.016874 | 413 trainlm [9, 12, 18] 0.02014
370 trainlm [8,12,17] 0.023433 | 414 trainlm [9,12,19] 0.016432
371 trainlm (8,12, 18] 0.026073 | 415 trainlm [9, 12, 20] 0.020093
372 trainlm [8, 12, 20] 0.021329 | 416 trainlm [9, 13, 14] 0.021387
373 trainlm (8, 13, 14] 0.028235 | 417 trainlm [9, 13, 15] 0.024709
374 trainlm [8, 13, 15] 0.020092 | 418 trainlm [9, 13, 16] 0.022693
375 trainlm [8, 13, 16] 0.024352 j 419 trainlm [9, 13, 17] 0.023471
376 trainlm [8,13,17] 0.025584 | 420 trainlm [9, 13, 18] 0.018945
377 trainlm [8, 13, 18] 0.027836 421 trainlm [9, 13, 19] 0.018725
378 trainlm [8, 13, 19] 0.024526 | 422 trainlm [9, 13, 20] 0.020318
379 trainlm [8, 13, 20] 0.017419 423 trainlm [9, 14, 15] 0.025842
380 trainlm [8, 14, 15] 0.023296 | 424 trainlm [9, 14, 16] 0.025815
381 trainlm [8, 14, 16] 0.017873 | 425 trainlm [9, 14, 17] 0.020473
382 trainlm [8, 14, 18] 0.018982 | 426 trainlm [9, 14, 18] 0.020376
383 trainlm [8, 14, 19] 0.027825 | 427 trainlm [9, 14, 20] 0.018514
384 trainlm [8, 14, 20] 0.02962 428 trainlm [9, 15, 18] 0.02099
385 trainlm [8, 15, 16] 0.02393 429 trainlm [9, 15, 19] 0.025796
386 trainlm [8, 15, 17] 0.023455 | 430 trainlm [9, 16, 17] 0.017569
387 trainlm [8, 15, 18] 0.028146 | 431 trainlm [9, 16, 18] 0.023721
388 trainlm [8, 15, 20] 0.018414 | 432 trainlm [9, 16, 19] 0.015612
389 trainlm [8, 16, 17] 0.017161 | 433 trainlm [9, 16, 20] 0.017613
390 trainlm [8, 16, 18] 0.019528 | 434 trainlm [9, 17, 18] 0.017676
391 trainlm [8, 16, 19] 0.0189 435 trainlm [9, 17, 20] 0.025094
392 trainlm [8,17,19] 0.020321 | 436 trainlm [9, 18, 19] 0.019654
393 trainlm [8, 18, 19] 0.025698 | 437 trainlm [9, 18, 20] 0.026639
394 trainlm [8, 18, 20] 0.020604 | 438 trainlm [9, 19, 20] 0.021889
395 trainlm [8, 19, 20] 0.016036 | 439 trainlm [10,11,12] | 0.023553
396 trainlm [9, 10, 12] 0.0226 440 trainlm [10,11, 13] | 0.025543




Model | Training Hidden Test Loss | Model Training | Hidden Test Loss
No. Function Neurons No. Function | Neurons

441 trainlm [10, 11, 14] 0.029434 | 485 trainbr [5, 11] 0.014153
442 trainlm [10, 11, 15] 0.02741 486 trainbr [5, 12] 0.014792
443 trainlm [10, 11, 16] 0.021277 |} 487 trainbr [5, 13] 0.014694
444 trainlm [10, 11, 18] 0.019751 J 488 trainbr [5, 14] 0.011732
445 trainlm [10, 11, 19] 0.023231 489 trainbr [5, 15] 0.011909
446 trainlm [10, 12, 13] 0.018263 § 490 trainbr [5, 16] 0.014226
447 trainlm [10, 12, 14] 0.019684 491 trainbr [5, 18] 0.011923
448 trainlm [10, 12, 15] 0.017852 492 trainbr [5, 19] 0.012937
449 trainlm [10, 12,17] 0.019541 493 trainbr [5, 20] 0.010302
450 trainlm [10, 12, 18] 0.019565 j 494 trainbr [6, 7] 0.012969
451 trainlm [10,12,19] 0.022747 | 495 trainbr [6, 8] 0.012761
452 trainlm [10, 12, 20] 0.026328 | 496 trainbr [6, 9] 0.013041
453 trainlm [10, 13, 14] 0.02943 497 trainbr [6, 11] 0.017278
454 trainlm [10, 13, 15] 0.018051 | 498 trainbr [6, 12] 0.010242
455 trainlm [10, 13, 16] 0.024386 | 499 trainbr [6, 14] 0.01513
456 trainlm [10, 13, 18] 0.029167 J 500 trainbr [6, 15] 0.012497
457 trainlm [10, 13, 19] 0.022914 | 501 trainbr [6, 16] 0.009478
458 trainlm [10, 13, 20] 0.025944 | 502 trainbr [6, 17] 0.016224
459 trainlm [10, 14, 15] 0.021652 | 503 trainbr [6, 18] 0.011696
460 trainlm [10, 14, 16] 0.022042 | 504 trainbr [6, 19] 0.012246
461 trainlm [10, 14, 17] 0.020876 | 505 trainbr [6, 20] 0.010943
462 trainlm [10, 14, 18] 0.028207 j 506 trainbr [7, 8] 0.008514
463 trainlm [10, 14, 19] 0.027713 | 507 trainbr [7,9] 0.01053
464 trainlm [10, 14, 20] 0.021265 | 508 trainbr [7, 10] 0.008429
465 trainlm [10, 15, 17] 0.017749 | 509 trainbr [7,11] 0.009379
466 trainbr [5] 0.014153 | 510 trainbr [7,12] 0.01313
467 trainbr [6] 0.015141 511 trainbr [7, 13] 0.009743
468 trainbr [3, 5] 0.014524 512 trainbr [7, 14] 0.014942
469 trainbr [3, 20] 0.019732 | 513 trainbr [7, 15] 0.010079
470 trainbr [4, 5] 0.01199 514 trainbr [7, 16] 0.011815
471 trainbr [4, 8] 0.013834 | 515 trainbr [7,17] 0.012273
472 trainbr [4, 10] 0.018487 | 516 trainbr [7, 18] 0.012879
473 trainbr [4, 11] 0.018422 | 517 trainbr [7,19] 0.011921
474 trainbr [4, 12] 0.015798 | 518 trainbr [7, 20] 0.013182
475 trainbr [4, 13] 0.014719 | 519 trainbr [8, 9] 0.010463
476 trainbr [4, 14] 0.015584 | 520 trainbr [8, 10] 0.016625
477 trainbr [4, 15] 0.013352 | 521 trainbr [8, 11] 0.011596
478 trainbr [4, 16] 0.015353 | 522 trainbr [8, 12] 0.011678
479 trainbr [4, 17] 0.01194 523 trainbr [8, 13] 0.011296
480 trainbr [4, 20] 0.014313 | 524 trainbr [8, 14] 0.010791
481 trainbr [5, 6] 0.011728 | 525 trainbr [8, 15] 0.015623
482 trainbr [5, 7] 0.012902 § 526 trainbr [8, 16] 0.00825
483 trainbr [5, 8] 0.012653 | 527 trainbr [8,17] 0.011503
484 trainbr [5, 10] 0.011425 § 528 trainbr [8, 18] 0.012841




Model Training Hidden Test Loss | Model Training Hidden Test Loss
No. Function Neurons No. Function Neurons

529 trainbr [8, 19] 0.008527 | 573 trainbr [13, 18] 0.014217
530 trainbr [8, 20] 0.011129 | 574 trainbr [13,19] 0.010559
531 trainbr [9, 10] 0.011004 | 575 trainbr [13, 20] 0.012732
532 trainbr [9, 11] 0.016558 | 576 trainbr [14, 15] 0.010466
533 trainbr [9,12] 0.017143 | 577 trainbr [14,17] 0.010628
534 trainbr [9, 13] 0.011186 | 578 trainbr [14, 18] 0.018114
535 trainbr [9, 14] 0.010405 {579 trainbr [14,19] 0.008564
536 trainbr [9, 15] 0.013585 | 580 trainbr [14, 20] 0.015524
537 trainbr [9, 16] 0.010382 | 581 trainbr [15, 16] 0.009957
538 trainbr [9,17] 0.011499 | 582 trainbr [15,17] 0.009106
539 trainbr [9, 18] 0.009907 | 583 trainbr [15, 18] 0.012153
540 trainbr [9,19] 0.011854 | 584 trainbr [15,19] 0.011849
541 trainbr [9, 20] 0.011469 | 585 trainbr [15, 20] 0.011703
542 trainbr [10, 11] 0.009864 | 586 trainbr [16, 17] 0.011123
543 trainbr [10, 12] 0.013366 | 587 trainbr [16, 18] 0.010621
544 trainbr [10, 13] 0.013657 | 588 trainbr [16, 19] 0.011178
545 trainbr [10, 14] 0.013183 | 589 trainbr [16, 20] 0.010883
546 trainbr [10, 15] 0.012048 | 590 trainbr [17, 18] 0.007922
547 trainbr [10, 16] 0.011199 591 trainbr [17, 19] 0.011424
548 trainbr [10, 17] 0.013794 § 592 trainbr [17, 20] 0.011471
549 trainbr [10, 18] 0.014148 | 593 trainbr [18, 19] 0.01041
550 trainbr [10, 19] 0.013545 | 594 trainbr [18, 20] 0.010753
551 trainbr [10, 20] 0.009219 | 595 trainbr [19, 20] 0.011261
552 trainbr [11, 12] 0.013531

553 trainbr [11, 13] 0.010876

554 trainbr [11, 14] 0.014877

555 trainbr [11, 15] 0.009262

556 trainbr [11, 16] 0.012353

557 trainbr [11, 17] 0.015619

558 trainbr [11, 18] 0.014471

559 trainbr [11, 19] 0.008801

560 trainbr [11, 20] 0.00969

561 trainbr [12, 13] 0.012397

562 trainbr [12, 14] 0.012743

563 trainbr [12, 15] 0.01034

564 trainbr [12, 16] 0.009265

565 trainbr [12, 17] 0.016304

566 trainbr [12, 18] 0.013469

567 trainbr [12, 19] 0.010983

568 trainbr [12, 20] 0.008335

569 trainbr [13, 14] 0.011

570 trainbr [13, 15] 0.011316

571 trainbr [13, 16] 0.009451

572 trainbr [13,17] 0.008701
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Figure S1: The low-resolution (left) and high-resolution (right) 400 Raman spectra each of

different samples taken in solid form using a 785 nm laser source.
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Figure S2: The additional low-resolution Raman spectra (10 spectra from each sample class)
(A) Aspirin, (C) Ibuprofen, and (E) PCM, where the highlighted part in the low-resolution
spectra shows the spectral differences (similarity index of 23.96%, 21.01%, and 23.80%,
respectively) within the same sample under identical conditions. This additional low-
resolution Raman spectra (A, C, and E) was fed to the trained GAN model to get the high-
resolution instance. The highlighted part shows that instead of the spectral differences in low-
resolution profile, the model capable to rebuild these lost features and generate the high-
resolution counterpart (B) Aspirin, (D) Ibuprofen, and (E) PCM (similarity index of 96.70%,
94.31%, and 96.30%, respectively). (G) The violin plot shows the variation of similarity index
in the additional low-resolution and GAN-generated high resolution Raman spectra shows less
than 25% similarity between low-resolution profile while the GAN-generated instances show
more than 90% similarity index. (H) The scatter plot from the PCA scores shows the highly
random fluctuation (more spread in data points) in the low-resolution profile and minimum in
the GAN-generated high-resolution Raman spectra.
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Figure S3: The additional low-resolution Raman spectra (10 spectra from each sample class)
(A) Ranitidine, (C) 4-MBA, and (E) 4-NTP, where the highlighted part in the low-resolution
spectra shows the spectral differences (similarity index of 15.39%, 22.21%, and 24.05%,
respectively) within the same sample under identical conditions. This additional low-
resolution Raman spectra (A, C, and E) was fed to the trained GAN model to get the high-
resolution instance. The highlighted part shows that instead of the spectral differences in low-
resolution profile, the model capable to rebuild these lost features and generate the high-
resolution counterpart (B) Ranitidine, (D) 4-MBA, and (F) 4-NTP (similarity index of 96.45%,
93.13%, and 99.57%, respectively). (G) The violin plot shows the variation of similarity index
in the additional low-resolution and GAN-generated high resolution Raman spectra shows less
than 25% similarity between low-resolution profile while the GAN-generated instances show
more than 90% similarity index. (H) The scatter plot from the PCA scores shows the highly
random fluctuation (more spread in data points) in the low-resolution profile and minimum in
the GAN-generated high-resolution Raman spectra.
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Figure S4: PCA loadings were utilized to observe the differences between the visually similar-
looking spectra from the different sample classes. The Raman spectral features appeared
visually identical in Loading Plot 1, but there is a major difference between the Raman features
of the different sample classes as shown in Loading Plot 2. These differences, which are not
visually apparent in the original low-resolution spectra, can be detected through PCA. This
shows that the visually similar spectra have hidden features embedded in the noise, which
can be identified by the GAN. That is why it is able to identify the sample classes without labels
and generate their high-resolution spectra. Aspirin (black), ibuprofen (red), PCM (blue),
ranitidine (green), 4-MBA (magenta), and 4-NTP (yellow).
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Figure S5: The architecture of the ANN classification network having highest accuracy and
minimum test loss (model 1) is consists of one input layer, two hidden layers with 17 and 18

neurons respectively, followed by the classification layer in the end.
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Table S3: The best three ANN classification network with their optimized parameters and
performance during training and testing with additional GAN-generated high-resolution

dataset.
Name Training No. of Accuracy Accuracy Loss
Function | hidden (Training, (Additional (Additional
layers/No. | Testing, and dataset, GAN- | dataset, GAN-
of Neurons | Validation) generated) generated)
Model 1 trainbr [17, 18] 100 % 97.5% 0.007922
Model 2 trainbr | [8, 16] 100 % 97.4 % 0.008250
Model 3 trainbr [12, 20] 100 % 97.3 % 0.008335
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Figure S6: Confusion matrices showing the accuracy of the ANN classification network
(modell) on high-resolution Raman dataset for (A) training, (B) testing, (C) validation, and (D)
overall accuracy. The representation for different samples is as follows: (1) aspirin, (2)
ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP. The confusion matrix shows the
target class (actual) vs output class (predicted by the model). The similar kind of accuracy was

observed for both model 2 and model 3.
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Figure S7: ROC of the ANN classification network (model1) on high-resolution Raman dataset

for (A) training, (B) validation, (C) testing, and (D) overall. The closer the curve is to the one,

the more accurate the results will be for classification. The similar kind of trend was observed

for both model 2 and model 3.
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Figure S8: Confusion matrices showing the accuracy of the ANN classification network (model
1) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a
classification accuracy of 97.5%. The representation for different samples is as follows: (1)

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP.
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Figure S9: (A) Confusion matrices showing the accuracy of the ANN classification network
(model 2) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a
classification accuracy of 97.4%. (B) ROC of the ANN classification network (model 2) for GAN-
generated high-resolution Raman data. The closer the curve is to the one, the more accurate
the results will be for classification. The representation for different samples is as follows: (1)

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP.
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Figure S10: (A) Confusion matrices showing the accuracy of the ANN classification network
(model 3) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a
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generated high-resolution Raman data. The closer the curve is to the one, the more accurate
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Figure S11: The GAN model was trained, validated, and tested using the 2400 low-resolution Raman spectra from
6 different class of samples (random splitting of dataset). The trained model for further tested on the additional
low-resolution dataset (never fed to model) to check for the model accuracy to transform the low-resolution
instance to a high-resolution Raman spectrum. The trained GAN model transformed the low-resolution to high
resolution in completely unsupervised way. (A) The low-resolution Raman spectra of the ibuprofen drug, where
the highlighted part in the low-resolution spectra shows the spectral differences (similarity index of 21% only)
within the same sample under identical conditions. (B) This low-resolution Raman spectra (A) was fed to the
trained GAN model to get the high-resolution instance. The highlighted part shows that instead of the spectra
differences in low-resolution profile, the model capable to rebuild these lost features and generate the high-
resolution counterpart (similarity index of 94%). (C) The violin plot shows the variation of similarity index in the
additional low-resolution (10 more samples) with similarity index of around 21% and GAN-generated high
resolution Raman spectra with similarity index of 94%. (D) The scatter plot from the PCA scores shows the highly
random fluctuation (more spread in data points) in the low-resolution profile and minimum in the GAN-

generated high-resolution Raman spectra.
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Figure S12: (A) Confusion matrices showing the accuracy of the ANN classification network for
GAN-generated high-resolution Raman dataset in case of sample-out (ibuprofen sample is not
a part of the training set during GAN model training) with a classification accuracy of 93.8%.
(B) ROC of the ANN classification network for GAN-generated high-resolution Raman data. The
closer the curve is to the one, the more accurate the results will be for classification. The
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Table S4: SNR of Raman spectra accumulated using high-resolution (HR), low-resolution (LR),

and machine learning (ML) generated for different samples.

Name No. of Mean Standard | Median Minimum | Maximum
Samples Deviation

Aspirin HR 400 23.581 8.795 23.090 12.610 180.808
Aspirin LR 400 7.995 3.292 7.616 3.946 57.172
Aspirin ML 400 45.641 9.079 44.747 33.647 162.210
Ibuprofen HR 400 33.213 10.274 31.840 10.139 177.383
Ibuprofen LR 400 10.159 6.660 8.202 3.800 59.728
Ibuprofen ML 400 37.403 4.805 37.172 10.501 55.476
PCM HR 400 106.312 11.583 106.825 20.517 129.524
PCM LR 400 9.469 2.241 9.140 4.899 23.589
PCM ML 400 172.409 14.652 184.890 27.765 314.103
Ranitidine HR 400 61.021 11.661 60.635 22.270 104.754
Ranitidine LR 400 15.964 9.972 13.597 5.406 115.825
Ranitidine ML 400 118.224 17.320 117.960 41.314 187.577
4-MBA HR 400 83.942 12.214 84.013 38.648 126.680
4-MBA LR 400 14.466 5.201 13.521 6.171 39.749
4-MBA ML 400 133.958 15.229 143.864 21.522 232.148
4-NTP HR 400 85.252 18.124 34101.064 33.839 81.849
4-NTP LR 400 8.580 5.704 5.463 3.572 37.482
4-NTP ML 400 128.547 14.136 51419.117 4.889 13.985
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Figure S13: The process of making a Raman barcode. (A) the Raman spectra of the 4-NTP
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molecule. (B) using the findpeaks function to extract the peak location and FWHM and

incorporate that information in the barcode. (C) The Raman barcode of the 4-NTP molecule.
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Table S5: Average similarity index (%) of the low-resolution Raman barcode with the high-resolution
Raman barcode.

Low Aspirin Ibuprofen PCM Ranitidine | 4-MBA 4-NTP

High

Aspirin 17.253 20.468 18.523 14.258 16.425 18.097
Ibuprofen 16.811 20.045 18.144 12.733 14.987 16.933
PCM 18.052 20.481 17.278 14.023 15.810 17.511
Ranitidine 14.735 16.694 18.386 15.277 14.274 15.309
4-MBA 16.187 19.520 18.003 13.757 13.717 14.850
4-NTP 18.629 20.657 19.738 15.556 16.142 18.462

Table S6: Standard deviation of similarity index of the low-resolution Raman barcode with the high-
resolution Raman barcode.

Low Aspirin Ibuprofen PCM Ranitidine | 4-MBA 4-NTP
High
Aspirin 7.027 7.080 7.954 7.204 7.550 7.497
Ibuprofen 6.967 7.740 9.024 6.236 7.181 7.046
PCM 8.804 8.537 7.889 6.852 7.572 7.727
Ranitidine 6.474 7.666 8.095 6.977 7.076 7.139
4-MBA 8.592 9.021 9.035 7.214 6.820 7.744
4-NTP 8.131 8.491 8.798 7.615 7.923 8.163
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Table S7: Average similarity index (%) of the GAN-generated high-resolution Raman barcode with the
high-resolution Raman barcode.

GAN Aspirin Ibuprofen | PCM Ranitidine | 4-MBA 4-NTP

High

Aspirin 97.643 43.901 24.709 24.704 25.304 18.674
Ibuprofen 42.500 95.250 31.345 46.600 45.705 25.877
PCM 24.247 32.369 97.344 63.380 21.222 10.673
Ranitidine 33.932 48.212 64.693 96.442 44.400 60.332
4-MBA 26.253 44.157 22.200 40.674 98.803 50.456
4-NTP 18.518 26.869 11.376 12.235 45.305 99.685

Table S8: Standard deviation of similarity index of the GAN-generated high-resolution Raman
barcode with the high-resolution Raman barcode.

GAN Aspirin Ibuprofen | PCM Ranitidine | 4-MBA 4-NTP
High
Aspirin 8.555 9.806 10.239 17.339 11.369 6.581
Ibuprofen 9.806 11.832 11.800 22.866 15.788 11.041
PCM 10.239 11.800 15.786 22.521 15.903 13.891
Ranitidine 17.339 22.866 22.521 23.426 19.815 23.693
4-MBA 11.369 15.788 15.903 19.815 16.610 16.229
4-NTP 6.581 11.041 13.891 23.693 16.229 12.011

S-35



PC4 PC1 PC5 7

pC7 PC10 PCo
Figure S14: The RadViz clustering between different class of samples (A) high, (B) low-
resolution, and (C) GAN-generated high-resolution Raman spectra showing different
clustering efficiency. The clustering efficiency of GAN-generated high-resolution Raman
spectra is significantly improved over its low-resolution counterpart. Aspirin (red), ibuprofen

(blue), PCM (green), ranitidine (grey), 4-MBA (cyan), and 4-NTP (magenta).
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