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Section S1: Material and Methods 

S1.1: Raman spectral acquisition 

The LR spectrometer possesses an approximate resolution of 31 cm-1, featuring a grating with 

150 lines per millimeter and incorporating a linear CCD array. The collection optics involved 

an Integrated Photonics System optical fiber probe coupled to a 785 nm laser (model: 

I0785SP100-T040S). The Raman probe has a central fiber for light input and is surrounded by 

six fiber endings to collect the scattered light. A ball lens is mounted to focus the light into the 

sample and collect the reflected light. The focal length of this probe is 4 mm. Raman spectra 

were acquired from aspirin, ibuprofen, paracetamol, ranitidine, 4-MBA, and 4-NTP. 

Approximately 400 Raman spectra were collected from each sample at different positions to 

account for spectral variability. Another set of high-resolution spectra was collected using the 

high-resolution Andor spectrophotometer (HR spectrometer) (Kymera 328i, with quad turret, 

328 mm focal length, F/4.1 aperture having CCD camera with resolution < 1 cm-1, grating 1800 

lines/mm) with similar acquisition setting, i.e., using a 785 nm laser with acquisition time of 

15 s and three accumulations, and 1800 lines/mm grating system. All Raman spectra were 

calibrated against the first-order silicon phonon mode at 520.7 cm⁻¹ to ensure alignment of 

the wavenumber axis across both low-resolution and high-resolution datasets. The calibration 

accuracy was within ±1 cm⁻¹, which is negligible compared to the spectral resolution difference 

between instruments (31 cm⁻¹). This calibration step ensured that GAN training was not 

affected by systematic shifts in peak positions, thereby preserving the fidelity of spectral 

reconstruction. We also accumulated 400 Raman spectra from each sample using the HR 

spectrometer. A series of spectra were recorded from each sample to create a comprehensive 

dataset for training the GAN. Care was taken to minimize external interferences, and all 

measurements were conducted in a controlled environment to maintain consistency. We have 

accumulated the spectrum from 200 nm to 1650 nm with 862 wavenumber points in between. 

All the spectra were first normalized and used as input for the ML model.  
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S1.2: Model builder for GAN 

The GAN model employed in this study consisted of a generator network built upon the U-Net 

architecture with eight blocks, each comprising convolutional layers, instance normalization 

layers, LeakyReLU layers, and tanh activation functions.1 Low-resolution spectra collected with 

an integration time of 15 s using an LR spectrometer were used as the input data for the 

generator. The generator network consists of multiple convolutional layers designed to 

capture the most valuable features and spatial hierarchies in the input data. It is a combination 

of an encoder and a decoder structure containing skip connection layers. The generator is 

crucial in transforming low-resolution Raman spectra into their high-resolution counterparts.2 

Since the generator is a U-Net-based design, it first down-samples all the information from 

the low-resolution Raman spectra to lower dimensional space through convolutional layers. 

Once the network extracts these valuable features, it starts upscaling and rebuilds the fully 

resolved high-resolution Raman spectra using extracted features. The discriminator is a five-

block network and is composed of convolutional layers aimed at discerning between the real 

and the generated data. It also employs layers of convolutional, batch normalization, and 

Leaky ReLU. All convolutional layers utilize 4×1 spatial filters applied with a stride of size 2. 

The output layer of the generator and discriminator has 1×1 spatial filters applied with a stride 

of size 1, followed by the Tanh activation function for the generator and the sigmoid activation 

function for the discriminator. While the core structure of the GAN follows conventional GAN 

architectures, our approach lies in the specific application to Raman spectral data. We have 

optimized the network design for spectral resolution enhancement, tailoring convolutional 

layers to capture the unique features of low-resolution Raman spectra and optimized training 

parameters to ensure rapid convergence and high-resolution spectral generation. 

Training parameters such as the learning rate, batch size, and epochs were carefully selected 

to optimize model performance. The model is trained over multiple epochs and tries to 

optimize the losses. The adversarial training process involved a competitive interplay between 

the generator and discriminator, with the former generating spectra to deceive the latter and 

the discriminator evolving to discern true high-resolution spectra. The rigorous evaluation 
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included generalization of performance on unseen spectra, quantitative metrics like SNR, 

spectral resolution, and peak intensity, and comparative analyses against spectra obtained 

directly from a high-resolution Raman spectrophotometer.  

To train the GAN model, we employed a supervised learning strategy by partitioning the 

complete dataset of 2400 Raman spectra into three distinct subsets. Specifically, 70% of the 

data (1680 spectra) was allocated for training, enabling the model to learn the mapping 

between low-resolution and high-resolution spectral domains. To optimize the learning 

process and prevent overfitting, 15% of the data (360 spectra) was reserved as a validation 

set and used to monitor model performance during training iterations. Once training was 

complete, the remaining 15% (360 spectra) was utilized as an independent test set to evaluate 

the generalization capability of the model on previously unseen spectral inputs. During the 

training process, the model tries to adjust its weight and biases in the layer, as well as these 

losses from both the generator and the discriminator. The loss function, LG from the generator 

network, measures how significantly the generator can deceive the discriminator network. 

The generator aims to minimize this loss (LG) during the training process to effectively generate 

outputs indistinguishable from real high-resolution spectra. The loss function, LD, from the 

discriminator network measures the discriminator's ability to classify between real and 

generated spectra. The discriminator aims to maximize this loss (LD), improving its capability 

to differentiate between real and generated data. The parameters G and D in the loss 

functions represent the weights and biases, which are iteratively updated during training to 

improve the efficiency accuracy for the generator and discriminator network, respectively. The 

interplay between LG and LD creates a dynamic training process where the generator and 

discriminator compete to continuously improve in a zero-sum game framework.  

The loss functions in the GAN model come from both generator (LG) and discriminator (LD) and 

were defined as2  
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𝐿𝐺 =
1

𝑁
 ∑ (𝐷(𝐺(𝑠𝑛), 𝑠𝑛) − 1)2 + 𝜆||𝐺(𝑠𝑛) − 𝑥𝑛||

1

𝑁

𝑛=1
 

𝐿𝐷 =
1

𝑁
 ∑ (𝐷(𝑥𝑛, 𝑠𝑛) − 1)2 + (𝐷(𝐺(𝑠𝑛), 𝑠𝑛))

2𝑁

𝑛=1
 

Where a high-resolution spectrum is denoted as xn and a corresponding low-resolution 

spectrum is denoted as sn, N is the number of training spectra. The hyperparameter λ was 

introduced to control the magnitude of the L1 norm, a metric used to quantify the dissimilarity 

between vectors.2 L1 norm was chosen to improve the SNR of the processed spectra. To train 

our model, we employed the Adam optimization algorithm over 177 epochs, with a learning 

rate of 0.0001 and an effective batch size of one.3 These parameters were selected to optimize 

the model's performance in reconstructing high-resolution spectra from their low-resolution 

counterparts.  

Due to the architectural complexity of the proposed GAN model comprising a deep 

convolutional generator and discriminator with a large number of trainable parameters, the 

training process is computationally intensive. The model was trained over approximately 164 

hours on a high-performance computing (HPC) cluster utilizing two parallel GPU nodes, each 

equipped with NVIDIA A100 GPUs (40 GB VRAM) and 2× Intel Xeon Platinum 8358 CPUs (32 

cores, 2.6 GHz, 8 CPUs). However, once the training phase is completed, the model 

demonstrates high inference efficiency. Specifically, it requires only ~88 milliseconds to 

generate a high-resolution Raman spectrum from a single low-resolution input of array size 

862×1. Furthermore, the inference time scales linearly with the input array size, making the 

model well-suited for real-time or high-throughput spectral enhancement applications. 
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S1.3: Classification of GAN-generated spectra using Artificial Neural Network 

(ANN) 

We employed an ANN architecture to classify the generated data and tuned the 

hyperparameters such as layer size, number of hidden neurons in each layer, and training 

function. The best classification model after optimization of the parameters is the ANN 

comprised of four layers: an input layer, two hidden layers with 17 and 18 neurons, 

respectively, and an output classification layer with six nodes corresponding to the categories 

of the samples (Figure S1). The evaluation of the individual models is given in Table S2. The 

ANN model in this study utilized the Bayesian regularization backpropagation algorithm for 

training, which iteratively updates the weights and biases based on the Levenberg-Marquardt 

optimization.4 Specifically, we employed the 'trainbr' function and assessed network 

performance using cross-entropy error and misclassification error metrics.5,6  

Cross-entropy loss, also known as log loss, measures the performance of a classification model 

whose output is a probability value between 0 and 1. The cross-entropy loss increases as the 

predicted probability diverges from the actual label. In essence, it quantifies the difference 

between two probability distributions—the true labels and the predicted probabilities. For 

single-label classification, the cross-entropy loss is calculated as: 

𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑇𝑖𝑐𝑙𝑛𝑌𝑖𝑐

𝐶

𝑐=1

𝑁

𝑖=1

 

Where N is the number of samples, Tic is the binary indicator (0 or 1) that corresponds to 

whether the class label c is the correct classification for the ith sample, and Yic is the predicted 

probability of the ith sample being in class c. The misclassification error metric measures the 

proportion of incorrect predictions made by the model, i.e., it calculates the ratio of the 

number of incorrect predictions to the total number of predictions and is given by the 

following equation: 
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𝐸 =
1

𝑁
 ∑ 𝐼

𝑁

𝑖=1

 (𝑦𝑖̂  ≠  𝑦𝑖) 

Where N is the total number of samples, 𝑦𝑖̂ is the predicted label, and yi is the true label for 

the ith sample. 

During the training state of the ANN model, we set the minimum performance gradient to 1 x 

e-6 and the maximum validation failure to 6. This means that if the performance of the model 

does not change by a margin of 1 x e-6 for six successive epochs, training will stop immediately. 

Upon satisfying these convergence criteria, the model is considered fully trained and ready 

for testing and validation. To ensure the reliability of our classification model, we conducted a 

3-fold validation process by randomly partitioning the dataset into training, testing, and 

validation subsets. The input data was normalized, and no additional preprocessing steps were 

applied to promote the generalization of the model. Since we have a substantial dataset, we 

utilized the entire Raman spectrum without augmentation for both training and testing. High-

resolution data was used to train the model. Once the model was trained, it was further tested 

on the generated high-resolution dataset to assess its performance. The model optimization 

was based on minimizing mean square error (MSE) and maximizing the coefficient of 

correlation (R). Convergence criteria for the model were determined by monitoring changes 

in MSE and R over successive iterations, with the training concluding once a predefined 

threshold was reached and remained unchanged for a specified number of iterations. The 

results were further analyzed through visualization techniques, such as confusion matrices 

and receiver operating characteristic (ROC) curves. Lastly, MATLAB scripts were generated to 

replicate the results and enable customization of the training process, ensuring reproducibility 

and flexibility in future experiments. 

The MSE for the classification model was calculated as follows: 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑋𝑖 −  𝑋𝑖̂)

𝑛

𝑖=1
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Wherein n is the number of total observations, Xi is the true class of the sample, and 𝑋𝑖̂ is the 

class of the sample predicted by the model. 

Although classifiers such as Support Vector Machine (SVM), k-nearest Neighbours (k-NN), 

Random Forest (RF), and Gradient Boosting Machines (GBM) can be used, the ANN method 

was opted over others because of the complex non-linear relationships inherent in Raman 

spectra, which might be challenging for linear models. ANNs can automatically learn features 

from raw data, reducing the need for manual feature extraction.7 Beyond classification 

accuracy, efforts were made for post-training interpretability, employing feature analysis and 

visualization techniques to gain insights into the distinctive spectral attributes defining 

different sample categories. For the visualization of different categories of samples, we first 

used Principal Component Analysis (PCA) to reduce the data from higher to lower dimensions. 

After that, the scores obtained from the PCA were directly incorporated into the Radial 

Visualization (RadViz) in Orange software. 

S1.4: Identification of the generated spectra of organic compounds via 

spectral barcoding 

To enable compound classification and automated identification, we adopted the concept of 

Raman barcoding for the analyte molecules. A comprehensive Raman spectral barcode library 

was initially constructed using the experimentally obtained Raman spectra from the HR 

spectrometer. The high-resolution Raman spectra obtained were processed in such a way that 

all information regarding peak position and full-width half maxima (FWHM) was integrated 

into the form of barcodes. The thickness and position of vertical lines are directly related to 

the spectral peak position and FWHM, respectively. An in-house MATLAB script was developed 

to preprocess the high-resolution spectra into their respective barcodes. Initially, spectral 

normalization was performed within the intensity range of 0 to 1. Subsequently, a peak 

searching algorithm identifies peaks in the Raman spectrum based on peak prominence using 

the "findpeaks" function. Raman barcodes were employed to verify the identity of the 



S-10 
 

unknown sample through barcode comparison. We opted for the Structural Similarity Index 

(SSIM) method to measure the similarity between two barcodes. The significance of SSIM lies 

in its ability to provide a more accurate and human-perceptual measure of image similarity, 

making it particularly useful in fields such as image processing, computer vision, and remote 

sensing. SSIM provides a robust and perceptually relevant measure of image similarity, 

leveraging the structural information within images to offer a meaningful comparison metric. 

SSIM compares two images, 𝐼 and 𝐼′, by considering three components: luminance (𝑙), contrast 

(𝑐), and structure (𝑠). The SSIM index is calculated using the following formula:8 

𝑆𝑆𝐼𝑀(𝐼, 𝐼′) = [𝑙(𝐼, 𝐼′)]𝛼 ⋅ [𝑐(𝐼, 𝐼′)]𝛽 ⋅ [𝑠(𝐼, 𝐼′)]𝛾 

If a significant portion of the barcode signature of the unknown sample matched with the 

barcode spectrum from the library, i.e., X, then the unknown sample was identified as X. The 

threshold percentage of the unknown sample barcode spectrum required for identification is 

referred to as the percentage match criterion. Subsequently, low-resolution Raman spectra 

were fed into a GAN model to generate high-resolution spectral outputs. These generated 

spectra were then encoded into Raman barcodes and compared against the spectral library to 

determine the similarity, quantified as a percentage match between the unknown sample's 

Raman barcode and those in the library. Upon scanning the entire library, the model identified 

the top-scoring profiles, thereby providing the identity of the unknown sample.  

If a significant portion of the barcode signature of the unknown sample matched with the 

barcode spectrum from the library, i.e., X, then the unknown sample was identified as X. The 

threshold percentage of the unknown sample barcode spectrum required for identification is 

referred to as the percentage match criterion. Subsequently, low-resolution Raman spectra 

were fed into a GAN model to generate high-resolution spectral outputs. These generated 

spectra were then encoded into Raman barcodes and compared against the spectral library to 

determine the similarity, quantified as a percentage match between the unknown sample's 
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Raman barcode and those in the library. Upon scanning the entire library, the model identified 

the top-scoring profiles, thereby providing the identity of the unknown sample. 

S1.5: Calculating of Signal-to-Noise Ratio 

The SNR for the low, high, and generated high-resolution Raman spectra were calculated by 

the formula below:9 

𝑆𝑁𝑅 =
𝑅𝑎𝑚𝑎𝑛 𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑛𝑜𝑖𝑠𝑒
 

 

𝑆𝑁𝑅 (𝑑𝐵) = 10 𝑙𝑜𝑔10(𝑆𝑁𝑅) 

 

S1.6: Process of making Raman spectral barcode 

For the barcoding process, we employed the "findpeaks" function in MATLAB, utilizing a peak 

prominence threshold set at 0.3, indicating that peaks with an SNR of 0.3 or higher are 

considered valid peaks within the Raman spectrum, discernible from the background noise. 

Once all peaks within the Raman spectrum and their FWHM values were identified and 

labeled, an in-house MATLAB algorithm was developed to fetch this information and integrate 

it into constructing the Raman barcode. Since Raman is a very sensitive technique for the 

detection of a sample, and every sample has a distinct Raman fingerprint region, the Raman 

barcode will be a unique identity that is assigned to the sample on the basis of Raman spectra.  

Consequently, each barcode encapsulates specific information unique to each sample, 

facilitating streamlined identification of unknown samples. We have created a spectral 

barcode library using high-resolution Raman spectra obtained from a high-resolution 

spectrometer. Given that the GAN has successfully transformed low-resolution Raman spectra 

into their high-resolution equivalents. The identifier then uses these generated high-

resolution spectra to extract the FWHM and peak positions, converting them into Raman 

barcodes. These barcodes are subsequently scanned against the Raman spectral barcode 

library, and the resulting matrix represents the percentage similarity index. We use the built-
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in MATLAB function 'SSIM' to calculate the similarity index of the barcode from an unknown 

sample against the spectral library. 

 

Table S1: Raman band assignment of different samples: aspirin, ibuprofen, PCM, ranitidine, 4-

MBA, and 4-NTP.10,11,12,13,14 

 

 

 

 

 

 

 

Raman Shift (cm-1) Raman band assignment 

1030 Aromatic rings 

1200 -OH group substitution 

1300 C-C bond 

1600 C=O stretching 

700-830 γ C-H  

1231 C-C ring stretching  

858 Ring breathing 

791 CNC ring stretching 

1319 Amide III 

1558 Amide II N-H in plane deformation 

1607 skeletal aryl C-C ring stretching 

1644 Amide I 

841 out-of-plane C-H bending 

1441, 1472 aryl C-C stretch 

1511 aryl C-H symmetric bends 

1587 NO2 asymmetric stretching 

1554, 1408 NO2 symmetric stretching 

1483, 1376 C-N symmetric stretching 

1450 C-C symmetric stretching 

1306 C-H in-plane bending 

1263, 1248 C-H out of plane bending 



S-13 
 

Table S2: The model optimization table for various parameters. 

Model 
No. 

Training 
Function 

Hidden 
Neurons 

Test Loss Model 
No. 

Training 
Function 

Hidden 
Neurons 

Test Loss 

1 trainlm [6] 0.025981 45 trainlm [8, 19] 0.02637 

2 trainlm [3, 6] 0.028332 46 trainlm [8, 20] 0.027906 

3 trainlm [4, 6] 0.026843 47 trainlm [9, 10] 0.021962 

4 trainlm [4, 10] 0.029288 48 trainlm [9, 11] 0.021414 

5 trainlm [4, 11] 0.029144 49 trainlm [9, 13] 0.023985 

6 trainlm [4, 12] 0.023078 50 trainlm [9, 15] 0.023128 

7 trainlm [4, 15] 0.029084 51 trainlm [9, 16] 0.024728 

8 trainlm [5, 10] 0.026997 52 trainlm [9, 17] 0.027728 

9 trainlm [5, 11] 0.024478 53 trainlm [9, 18] 0.023069 

10 trainlm [5, 12] 0.023113 54 trainlm [9, 19] 0.022849 

11 trainlm [5, 13] 0.02859 55 trainlm [10, 14] 0.029717 

12 trainlm [5, 14] 0.027967 56 trainlm [10, 15] 0.026676 

13 trainlm [5, 16] 0.029415 57 trainlm [10, 17] 0.029091 

14 trainlm [5, 18] 0.024838 58 trainlm [10, 20] 0.01982 

15 trainlm [5, 19] 0.027732 59 trainlm [11, 14] 0.023211 

16 trainlm [5, 20] 0.028819 60 trainlm [11, 15] 0.025901 

17 trainlm [6, 7] 0.02589 61 trainlm [11, 16] 0.022485 

18 trainlm [6, 9] 0.025331 62 trainlm [11, 17] 0.024967 

19 trainlm [6, 10] 0.022424 63 trainlm [11, 18] 0.027611 

20 trainlm [6, 11] 0.022461 64 trainlm [11, 19] 0.025603 

21 trainlm [6, 12] 0.022132 65 trainlm [11, 20] 0.027897 

22 trainlm [6, 13] 0.02589 66 trainlm [12, 14] 0.022319 

23 trainlm [6, 14] 0.02808 67 trainlm [12, 16] 0.019906 

24 trainlm [6, 15] 0.021693 68 trainlm [12, 17] 0.026521 

25 trainlm [6, 16] 0.021657 69 trainlm [12, 18] 0.022467 

26 trainlm [6, 17] 0.024102 70 trainlm [12, 19] 0.022086 

27 trainlm [6, 18] 0.028086 71 trainlm [13, 16] 0.027623 

28 trainlm [6, 19] 0.02007 72 trainlm [13, 17] 0.024226 

29 trainlm [6, 20] 0.018801 73 trainlm [13, 20] 0.029899 

30 trainlm [7, 9] 0.024369 74 trainlm [14, 15] 0.029871 

31 trainlm [7, 10] 0.022259 75 trainlm [14, 16] 0.018615 

32 trainlm [7, 11] 0.027534 76 trainlm [14, 17] 0.026844 

33 trainlm [7, 12] 0.023687 77 trainlm [15, 16] 0.026204 

34 trainlm [7, 13] 0.024874 78 trainlm [15, 17] 0.025169 

35 trainlm [7, 14] 0.024143 79 trainlm [16, 18] 0.019279 

36 trainlm [7, 16] 0.025499 80 trainlm [16, 20] 0.026439 

37 trainlm [7, 18] 0.02622 81 trainlm [17, 18] 0.029288 

38 trainlm [7, 19] 0.022173 82 trainlm [17, 20] 0.022176 

39 trainlm [8, 9] 0.024886 83 trainlm [18, 19] 0.027043 

40 trainlm [8, 10] 0.019097 84 trainlm [3, 4, 7] 0.024825 

41 trainlm [8, 13] 0.025541 85 trainlm [3, 4, 20] 0.028591 

42 trainlm [8, 14] 0.026174 86 trainlm [3, 5, 16] 0.029862 

43 trainlm [8, 15] 0.028847 87 trainlm [3, 6, 17] 0.024444 

44 trainlm [8, 17] 0.028759 88 trainlm [3, 7, 12] 0.027207 
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Model 
No. 

Training 
Function 

Hidden 
Neurons 

Test Loss Model 
No. 

Training 
Function 

Hidden 
Neurons 

Test Loss 

89 trainlm [3, 10, 12] 0.023092 133 trainlm [4, 12, 13] 0.023064 

90 trainlm [3, 11, 15] 0.028372 134 trainlm [4, 12, 14] 0.021336 

91 trainlm [3, 11, 18] 0.028773 135 trainlm [4, 12, 15] 0.022402 

92 trainlm [3, 12, 17] 0.029499 136 trainlm [4, 12, 16] 0.023035 

93 trainlm [3, 13, 20] 0.02803 137 trainlm [4, 12, 17] 0.022225 

94 trainlm [3, 14, 16] 0.029983 138 trainlm [4, 12, 18] 0.027938 

95 trainlm [3, 14, 19] 0.026622 139 trainlm [4, 12, 19] 0.027287 

96 trainlm [3, 15, 16] 0.028687 140 trainlm [4, 12, 20] 0.022275 

97 trainlm [3, 16, 17] 0.02784 141 trainlm [4, 13, 14] 0.02507 

98 trainlm [3, 18, 20] 0.027252 142 trainlm [4, 13, 20] 0.021553 

99 trainlm [3, 19, 20] 0.026676 143 trainlm [4, 14, 16] 0.026146 

100 trainlm [4, 5, 9] 0.027233 144 trainlm [4, 14, 17] 0.024048 

101 trainlm [4, 5, 15] 0.022009 145 trainlm [4, 14, 18] 0.021127 

102 trainlm [4, 5, 17] 0.021853 146 trainlm [4, 14, 20] 0.023905 

103 trainlm [4, 5, 20] 0.021913 147 trainlm [4, 15, 17] 0.023299 

104 trainlm [4, 6, 7] 0.028072 148 trainlm [4, 15, 18] 0.026942 

105 trainlm [4, 6, 11] 0.029618 149 trainlm [4, 15, 19] 0.025296 

106 trainlm [4, 6, 12] 0.024806 150 trainlm [4, 15, 20] 0.026287 

107 trainlm [4, 6, 16] 0.028125 151 trainlm [4, 16, 17] 0.028423 

108 trainlm [4, 6, 18] 0.027009 152 trainlm [4, 16, 18] 0.022115 

109 trainlm [4, 7, 8] 0.024657 153 trainlm [4, 16, 19] 0.020908 

110 trainlm [4, 7, 9] 0.02925 154 trainlm [4, 16, 20] 0.021028 

111 trainlm [4, 7, 10] 0.027788 155 trainlm [4, 17, 20] 0.024154 

112 trainlm [4, 7, 11] 0.026738 156 trainlm [4, 18, 19] 0.019465 

113 trainlm [4, 7, 13] 0.028909 157 trainlm [4, 19, 20] 0.020579 

114 trainlm [4, 7, 18] 0.023425 158 trainlm [5, 6, 8] 0.026558 

115 trainlm [4, 8, 11] 0.022378 159 trainlm [5, 6, 11] 0.028853 

116 trainlm [4, 8, 12] 0.025057 160 trainlm [5, 6, 12] 0.019281 

117 trainlm [4, 8, 14] 0.028675 161 trainlm [5, 6, 13] 0.021773 

118 trainlm [4, 8, 15] 0.027409 162 trainlm [5, 6, 18] 0.024057 

119 trainlm [4, 8, 18] 0.025703 163 trainlm [5, 7, 8] 0.029874 

120 trainlm [4, 9, 11] 0.024389 164 trainlm [5, 7, 9] 0.026643 

121 trainlm [4, 9, 12] 0.029705 165 trainlm [5, 7, 12] 0.019883 

122 trainlm [4, 9, 14] 0.02381 166 trainlm [5, 7, 14] 0.027047 

123 trainlm [4, 9, 15] 0.023733 167 trainlm [5, 7, 15] 0.025317 

124 trainlm [4, 9, 16] 0.026554 168 trainlm [5, 7, 16] 0.025411 

125 trainlm [4, 9, 18] 0.025992 169 trainlm [5, 7, 17] 0.029508 

126 trainlm [4, 9, 19] 0.025909 170 trainlm [5, 7, 18] 0.028147 

127 trainlm [4, 10, 15] 0.019944 171 trainlm [5, 7, 20] 0.02521 

128 trainlm [4, 10, 20] 0.028791 172 trainlm [5, 8, 9] 0.01958 

129 trainlm [4, 11, 13] 0.027324 173 trainlm [5, 8, 11] 0.025317 

130 trainlm [4, 11, 16] 0.02285 174 trainlm [5, 8, 14] 0.028328 

131 trainlm [4, 11, 17] 0.02681 175 trainlm [5, 8, 16] 0.025291 

132 trainlm [4, 11, 20] 0.024606 176 trainlm [5, 8, 17] 0.028868 
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177 trainlm [5, 8, 18] 0.024276 221 trainlm [5, 17, 19] 0.022788 

178 trainlm [5, 8, 19] 0.024267 222 trainlm [5, 17, 20] 0.025473 

179 trainlm [5, 8, 20] 0.026215 223 trainlm [5, 18, 19] 0.029239 

180 trainlm [5, 9, 10] 0.023812 224 trainlm [6, 7, 9] 0.02589 

181 trainlm [5, 9, 13] 0.027888 225 trainlm [6, 7, 11] 0.019419 

182 trainlm [5, 9, 15] 0.026313 226 trainlm [6, 7, 12] 0.025502 

183 trainlm [5, 9, 17] 0.020138 227 trainlm [6, 7, 13] 0.019197 

184 trainlm [5, 9, 19] 0.022191 228 trainlm [6, 7, 14] 0.028957 

185 trainlm [5, 9, 20] 0.026173 229 trainlm [6, 7, 15] 0.02706 

186 trainlm [5, 10, 11] 0.028822 230 trainlm [6, 7, 16] 0.027207 

187 trainlm [5, 10, 13] 0.022384 231 trainlm [6, 7, 20] 0.023248 

188 trainlm [5, 10, 14] 0.029394 232 trainlm [6, 8, 13] 0.027517 

189 trainlm [5, 10, 16] 0.027266 233 trainlm [6, 8, 14] 0.022826 

190 trainlm [5, 10, 17] 0.02577 234 trainlm [6, 8, 15] 0.025366 

191 trainlm [5, 10, 18] 0.026393 235 trainlm [6, 8, 16] 0.028407 

192 trainlm [5, 10, 19] 0.025652 236 trainlm [6, 8, 17] 0.026367 

193 trainlm [5, 10, 20] 0.026157 237 trainlm [6, 8, 20] 0.022482 

194 trainlm [5, 11, 12] 0.02386 238 trainlm [6, 9, 10] 0.020926 

195 trainlm [5, 11, 14] 0.022098 239 trainlm [6, 9, 11] 0.020374 

196 trainlm [5, 11, 15] 0.029555 240 trainlm [6, 9, 12] 0.022418 

197 trainlm [5, 11, 16] 0.020461 241 trainlm [6, 9, 13] 0.021767 

198 trainlm [5, 11, 17] 0.020628 242 trainlm [6, 9, 14] 0.026815 

199 trainlm [5, 11, 19] 0.024751 243 trainlm [6, 9, 15] 0.028121 

200 trainlm [5, 12, 14] 0.025937 244 trainlm [6, 9, 17] 0.022267 

201 trainlm [5, 12, 15] 0.01989 245 trainlm [6, 9, 18] 0.024894 

202 trainlm [5, 12, 18] 0.026095 246 trainlm [6, 9, 19] 0.028824 

203 trainlm [5, 12, 19] 0.028442 247 trainlm [6, 9, 20] 0.021732 

204 trainlm [5, 12, 20] 0.020484 248 trainlm [6, 10, 11] 0.028234 

205 trainlm [5, 13, 16] 0.028746 249 trainlm [6, 10, 12] 0.019828 

206 trainlm [5, 13, 17] 0.025889 250 trainlm [6, 10, 14] 0.025194 

207 trainlm [5, 13, 19] 0.025197 251 trainlm [6, 10, 17] 0.025453 

208 trainlm [5, 14, 15] 0.022911 252 trainlm [6, 10, 18] 0.025026 

209 trainlm [5, 14, 16] 0.025035 253 trainlm [6, 10, 20] 0.020242 

210 trainlm [5, 14, 17] 0.023382 254 trainlm [6, 11, 12] 0.027642 

211 trainlm [5, 14, 18] 0.023999 255 trainlm [6, 11, 14] 0.02275 

212 trainlm [5, 14, 19] 0.023317 256 trainlm [6, 11, 15] 0.024734 

213 trainlm [5, 14, 20] 0.027769 257 trainlm [6, 11, 16] 0.026935 

214 trainlm [5, 15, 16] 0.025336 258 trainlm [6, 11, 17] 0.026464 

215 trainlm [5, 15, 17] 0.017589 259 trainlm [6, 11, 19] 0.025969 

216 trainlm [5, 15, 18] 0.029869 260 trainlm [6, 12, 13] 0.020462 

217 trainlm [5, 15, 19] 0.021986 261 trainlm [6, 12, 15] 0.024411 

218 trainlm [5, 16, 17] 0.026385 262 trainlm [6, 12, 16] 0.020253 

219 trainlm [5, 16, 19] 0.025829 263 trainlm [6, 12, 17] 0.027938 

220 trainlm [5, 16, 20] 0.020876 264 trainlm [6, 12, 19] 0.029521 
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265 trainlm [6, 12, 20] 0.01787 309 trainlm [7, 11, 14] 0.020266 

266 trainlm [6, 13, 14] 0.021036 310 trainlm [7, 11, 15] 0.021781 

267 trainlm [6, 13, 17] 0.02246 311 trainlm [7, 11, 16] 0.022872 

268 trainlm [6, 13, 18] 0.020947 312 trainlm [7, 11, 17] 0.022325 

269 trainlm [6, 13, 19] 0.022918 313 trainlm [7, 11, 18] 0.017691 

270 trainlm [6, 13, 20] 0.023887 314 trainlm [7, 11, 20] 0.024701 

271 trainlm [6, 14, 15] 0.016728 315 trainlm [7, 12, 13] 0.022607 

272 trainlm [6, 14, 17] 0.019388 316 trainlm [7, 12, 14] 0.025172 

273 trainlm [6, 14, 18] 0.028385 317 trainlm [7, 12, 17] 0.021569 

274 trainlm [6, 15, 16] 0.029194 318 trainlm [7, 12, 18] 0.021456 

275 trainlm [6, 15, 17] 0.028094 319 trainlm [7, 12, 19] 0.020822 

276 trainlm [6, 15, 18] 0.018153 320 trainlm [7, 12, 20] 0.027649 

277 trainlm [6, 15, 19] 0.017323 321 trainlm [7, 13, 15] 0.02543 

278 trainlm [6, 16, 18] 0.021136 322 trainlm [7, 13, 16] 0.025565 

279 trainlm [6, 16, 19] 0.019058 323 trainlm [7, 13, 17] 0.021566 

280 trainlm [6, 16, 20] 0.027041 324 trainlm [7, 13, 19] 0.029497 

281 trainlm [6, 17, 18] 0.02074 325 trainlm [7, 13, 20] 0.017737 

282 trainlm [6, 17, 19] 0.023886 326 trainlm [7, 14, 15] 0.029436 

283 trainlm [6, 17, 20] 0.024397 327 trainlm [7, 14, 17] 0.020334 

284 trainlm [6, 19, 20] 0.021832 328 trainlm [7, 14, 19] 0.024916 

285 trainlm [7, 8, 9] 0.025043 329 trainlm [7, 14, 20] 0.024732 

286 trainlm [7, 8, 10] 0.02491 330 trainlm [7, 15, 16] 0.023846 

287 trainlm [7, 8, 11] 0.028189 331 trainlm [7, 15, 17] 0.019015 

288 trainlm [7, 8, 12] 0.022613 332 trainlm [7, 15, 18] 0.028382 

289 trainlm [7, 8, 15] 0.02604 333 trainlm [7, 15, 19] 0.027256 

290 trainlm [7, 8, 16] 0.029233 334 trainlm [7, 15, 20] 0.018687 

291 trainlm [7, 8, 17] 0.023669 335 trainlm [7, 16, 17] 0.020564 

292 trainlm [7, 9, 10] 0.025732 336 trainlm [7, 16, 18] 0.02146 

293 trainlm [7, 9, 14] 0.026594 337 trainlm [7, 16, 19] 0.019281 

294 trainlm [7, 9, 15] 0.027803 338 trainlm [7, 16, 20] 0.025033 

295 trainlm [7, 9, 16] 0.018886 339 trainlm [7, 17, 18] 0.027956 

296 trainlm [7, 9, 18] 0.024837 340 trainlm [7, 17, 19] 0.022673 

297 trainlm [7, 9, 19] 0.021873 341 trainlm [7, 17, 20] 0.022018 

298 trainlm [7, 9, 20] 0.020977 342 trainlm [7, 18, 19] 0.021809 

299 trainlm [7, 10, 11] 0.018921 343 trainlm [7, 18, 20] 0.024642 

300 trainlm [7, 10, 12] 0.019845 344 trainlm [8, 9, 10] 0.020977 

301 trainlm [7, 10, 13] 0.029102 345 trainlm [8, 9, 13] 0.017213 

302 trainlm [7, 10, 14] 0.026593 346 trainlm [8, 9, 15] 0.026605 

303 trainlm [7, 10, 16] 0.025991 347 trainlm [8, 9, 16] 0.029001 

304 trainlm [7, 10, 17] 0.025178 348 trainlm [8, 9, 17] 0.020083 

305 trainlm [7, 10, 18] 0.018749 349 trainlm [8, 9, 18] 0.01756 

306 trainlm [7, 10, 19] 0.022861 350 trainlm [8, 9, 19] 0.016675 

307 trainlm [7, 10, 20] 0.021184 351 trainlm [8, 10, 11] 0.021337 

308 trainlm [7, 11, 13] 0.028366 352 trainlm [8, 10, 13] 0.024706 
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353 trainlm [8, 10, 14] 0.022795 397 trainlm [9, 10, 13] 0.029775 

354 trainlm [8, 10, 15] 0.025777 398 trainlm [9, 10, 14] 0.02176 

355 trainlm [8, 10, 16] 0.024821 399 trainlm [9, 10, 15] 0.018072 

356 trainlm [8, 10, 17] 0.025039 400 trainlm [9, 10, 16] 0.027963 

357 trainlm [8, 10, 18] 0.021865 401 trainlm [9, 10, 17] 0.027865 

358 trainlm [8, 10, 19] 0.023573 402 trainlm [9, 10, 18] 0.020186 

359 trainlm [8, 10, 20] 0.02559 403 trainlm [9, 10, 19] 0.02074 

360 trainlm [8, 11, 12] 0.023049 404 trainlm [9, 10, 20] 0.021299 

361 trainlm [8, 11, 14] 0.017586 405 trainlm [9, 11, 12] 0.029742 

362 trainlm [8, 11, 15] 0.023202 406 trainlm [9, 11, 13] 0.021462 

363 trainlm [8, 11, 16] 0.023724 407 trainlm [9, 11, 14] 0.023381 

364 trainlm [8, 11, 17] 0.025552 408 trainlm [9, 11, 15] 0.020893 

365 trainlm [8, 11, 18] 0.02159 409 trainlm [9, 11, 16] 0.027505 

366 trainlm [8, 11, 19] 0.018616 410 trainlm [9, 11, 19] 0.017625 

367 trainlm [8, 12, 13] 0.022627 411 trainlm [9, 12, 14] 0.029556 

368 trainlm [8, 12, 14] 0.022852 412 trainlm [9, 12, 15] 0.019361 

369 trainlm [8, 12, 16] 0.016874 413 trainlm [9, 12, 18] 0.02014 

370 trainlm [8, 12, 17] 0.023433 414 trainlm [9, 12, 19] 0.016432 

371 trainlm [8, 12, 18] 0.026073 415 trainlm [9, 12, 20] 0.020093 

372 trainlm [8, 12, 20] 0.021329 416 trainlm [9, 13, 14] 0.021387 

373 trainlm [8, 13, 14] 0.028235 417 trainlm [9, 13, 15] 0.024709 

374 trainlm [8, 13, 15] 0.020092 418 trainlm [9, 13, 16] 0.022693 

375 trainlm [8, 13, 16] 0.024352 419 trainlm [9, 13, 17] 0.023471 

376 trainlm [8, 13, 17] 0.025584 420 trainlm [9, 13, 18] 0.018945 

377 trainlm [8, 13, 18] 0.027836 421 trainlm [9, 13, 19] 0.018725 

378 trainlm [8, 13, 19] 0.024526 422 trainlm [9, 13, 20] 0.020318 

379 trainlm [8, 13, 20] 0.017419 423 trainlm [9, 14, 15] 0.025842 

380 trainlm [8, 14, 15] 0.023296 424 trainlm [9, 14, 16] 0.025815 

381 trainlm [8, 14, 16] 0.017873 425 trainlm [9, 14, 17] 0.020473 

382 trainlm [8, 14, 18] 0.018982 426 trainlm [9, 14, 18] 0.020376 

383 trainlm [8, 14, 19] 0.027825 427 trainlm [9, 14, 20] 0.018514 

384 trainlm [8, 14, 20] 0.02962 428 trainlm [9, 15, 18] 0.02099 

385 trainlm [8, 15, 16] 0.02393 429 trainlm [9, 15, 19] 0.025796 

386 trainlm [8, 15, 17] 0.023455 430 trainlm [9, 16, 17] 0.017569 

387 trainlm [8, 15, 18] 0.028146 431 trainlm [9, 16, 18] 0.023721 

388 trainlm [8, 15, 20] 0.018414 432 trainlm [9, 16, 19] 0.015612 

389 trainlm [8, 16, 17] 0.017161 433 trainlm [9, 16, 20] 0.017613 

390 trainlm [8, 16, 18] 0.019528 434 trainlm [9, 17, 18] 0.017676 

391 trainlm [8, 16, 19] 0.0189 435 trainlm [9, 17, 20] 0.025094 

392 trainlm [8, 17, 19] 0.020321 436 trainlm [9, 18, 19] 0.019654 

393 trainlm [8, 18, 19] 0.025698 437 trainlm [9, 18, 20] 0.026639 

394 trainlm [8, 18, 20] 0.020604 438 trainlm [9, 19, 20] 0.021889 

395 trainlm [8, 19, 20] 0.016036 439 trainlm [10, 11, 12] 0.023553 

396 trainlm [9, 10, 12] 0.0226 440 trainlm [10, 11, 13] 0.025543 
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441 trainlm [10, 11, 14] 0.029434 485 trainbr [5, 11] 0.014153 

442 trainlm [10, 11, 15] 0.02741 486 trainbr [5, 12] 0.014792 

443 trainlm [10, 11, 16] 0.021277 487 trainbr [5, 13] 0.014694 

444 trainlm [10, 11, 18] 0.019751 488 trainbr [5, 14] 0.011732 

445 trainlm [10, 11, 19] 0.023231 489 trainbr [5, 15] 0.011909 

446 trainlm [10, 12, 13] 0.018263 490 trainbr [5, 16] 0.014226 

447 trainlm [10, 12, 14] 0.019684 491 trainbr [5, 18] 0.011923 

448 trainlm [10, 12, 15] 0.017852 492 trainbr [5, 19] 0.012937 

449 trainlm [10, 12, 17] 0.019541 493 trainbr [5, 20] 0.010302 

450 trainlm [10, 12, 18] 0.019565 494 trainbr [6, 7] 0.012969 

451 trainlm [10, 12, 19] 0.022747 495 trainbr [6, 8] 0.012761 

452 trainlm [10, 12, 20] 0.026328 496 trainbr [6, 9] 0.013041 

453 trainlm [10, 13, 14] 0.02943 497 trainbr [6, 11] 0.017278 

454 trainlm [10, 13, 15] 0.018051 498 trainbr [6, 12] 0.010242 

455 trainlm [10, 13, 16] 0.024386 499 trainbr [6, 14] 0.01513 

456 trainlm [10, 13, 18] 0.029167 500 trainbr [6, 15] 0.012497 

457 trainlm [10, 13, 19] 0.022914 501 trainbr [6, 16] 0.009478 

458 trainlm [10, 13, 20] 0.025944 502 trainbr [6, 17] 0.016224 

459 trainlm [10, 14, 15] 0.021652 503 trainbr [6, 18] 0.011696 

460 trainlm [10, 14, 16] 0.022042 504 trainbr [6, 19] 0.012246 

461 trainlm [10, 14, 17] 0.020876 505 trainbr [6, 20] 0.010943 

462 trainlm [10, 14, 18] 0.028207 506 trainbr [7, 8] 0.008514 

463 trainlm [10, 14, 19] 0.027713 507 trainbr [7, 9] 0.01053 

464 trainlm [10, 14, 20] 0.021265 508 trainbr [7, 10] 0.008429 

465 trainlm [10, 15, 17] 0.017749 509 trainbr [7, 11] 0.009379 

466 trainbr [5] 0.014153 510 trainbr [7, 12] 0.01313 

467 trainbr [6] 0.015141 511 trainbr [7, 13] 0.009743 

468 trainbr [3, 5] 0.014524 512 trainbr [7, 14] 0.014942 

469 trainbr [3, 20] 0.019732 513 trainbr [7, 15] 0.010079 

470 trainbr [4, 5] 0.01199 514 trainbr [7, 16] 0.011815 

471 trainbr [4, 8] 0.013834 515 trainbr [7, 17] 0.012273 

472 trainbr [4, 10] 0.018487 516 trainbr [7, 18] 0.012879 

473 trainbr [4, 11] 0.018422 517 trainbr [7, 19] 0.011921 

474 trainbr [4, 12] 0.015798 518 trainbr [7, 20] 0.013182 

475 trainbr [4, 13] 0.014719 519 trainbr [8, 9] 0.010463 

476 trainbr [4, 14] 0.015584 520 trainbr [8, 10] 0.016625 

477 trainbr [4, 15] 0.013352 521 trainbr [8, 11] 0.011596 

478 trainbr [4, 16] 0.015353 522 trainbr [8, 12] 0.011678 

479 trainbr [4, 17] 0.01194 523 trainbr [8, 13] 0.011296 

480 trainbr [4, 20] 0.014313 524 trainbr [8, 14] 0.010791 

481 trainbr [5, 6] 0.011728 525 trainbr [8, 15] 0.015623 

482 trainbr [5, 7] 0.012902 526 trainbr [8, 16] 0.00825 

483 trainbr [5, 8] 0.012653 527 trainbr [8, 17] 0.011503 

484 trainbr [5, 10] 0.011425 528 trainbr [8, 18] 0.012841 
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529 trainbr [8, 19] 0.008527 573 trainbr [13, 18] 0.014217 

530 trainbr [8, 20] 0.011129 574 trainbr [13, 19] 0.010559 

531 trainbr [9, 10] 0.011004 575 trainbr [13, 20] 0.012732 

532 trainbr [9, 11] 0.016558 576 trainbr [14, 15] 0.010466 

533 trainbr [9, 12] 0.017143 577 trainbr [14, 17] 0.010628 

534 trainbr [9, 13] 0.011186 578 trainbr [14, 18] 0.018114 

535 trainbr [9, 14] 0.010405 579 trainbr [14, 19] 0.008564 

536 trainbr [9, 15] 0.013585 580 trainbr [14, 20] 0.015524 

537 trainbr [9, 16] 0.010382 581 trainbr [15, 16] 0.009957 

538 trainbr [9, 17] 0.011499 582 trainbr [15, 17] 0.009106 

539 trainbr [9, 18] 0.009907 583 trainbr [15, 18] 0.012153 

540 trainbr [9, 19] 0.011854 584 trainbr [15, 19] 0.011849 

541 trainbr [9, 20] 0.011469 585 trainbr [15, 20] 0.011703 

542 trainbr [10, 11] 0.009864 586 trainbr [16, 17] 0.011123 

543 trainbr [10, 12] 0.013366 587 trainbr [16, 18] 0.010621 

544 trainbr [10, 13] 0.013657 588 trainbr [16, 19] 0.011178 

545 trainbr [10, 14] 0.013183 589 trainbr [16, 20] 0.010883 

546 trainbr [10, 15] 0.012048 590 trainbr [17, 18] 0.007922 

547 trainbr [10, 16] 0.011199 591 trainbr [17, 19] 0.011424 

548 trainbr [10, 17] 0.013794 592 trainbr [17, 20] 0.011471 

549 trainbr [10, 18] 0.014148 593 trainbr [18, 19] 0.01041 

550 trainbr [10, 19] 0.013545 594 trainbr [18, 20] 0.010753 

551 trainbr [10, 20] 0.009219 595 trainbr [19, 20] 0.011261 

552 trainbr [11, 12] 0.013531     

553 trainbr [11, 13] 0.010876     

554 trainbr [11, 14] 0.014877     

555 trainbr [11, 15] 0.009262     

556 trainbr [11, 16] 0.012353     

557 trainbr [11, 17] 0.015619     

558 trainbr [11, 18] 0.014471     

559 trainbr [11, 19] 0.008801     

560 trainbr [11, 20] 0.00969     

561 trainbr [12, 13] 0.012397     

562 trainbr [12, 14] 0.012743     

563 trainbr [12, 15] 0.01034     

564 trainbr [12, 16] 0.009265     

565 trainbr [12, 17] 0.016304     

566 trainbr [12, 18] 0.013469     

567 trainbr [12, 19] 0.010983     

568 trainbr [12, 20] 0.008335     

569 trainbr [13, 14] 0.011     

570 trainbr [13, 15] 0.011316     

571 trainbr [13, 16] 0.009451     

572 trainbr [13, 17] 0.008701     
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Figure S1: The low-resolution (left) and high-resolution (right) 400 Raman spectra each of 

different samples taken in solid form using a 785 nm laser source. 
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Figure S2: The additional low-resolution Raman spectra (10 spectra from each sample class) 
(A) Aspirin, (C) Ibuprofen, and (E) PCM, where the highlighted part in the low-resolution 
spectra shows the spectral differences (similarity index of 23.96%, 21.01%, and 23.80%, 
respectively) within the same sample under identical conditions. This additional low-
resolution Raman spectra (A, C, and E) was fed to the trained GAN model to get the high-
resolution instance. The highlighted part shows that instead of the spectral differences in low-
resolution profile, the model capable to rebuild these lost features and generate the high-
resolution counterpart (B) Aspirin, (D) Ibuprofen, and (E) PCM (similarity index of 96.70%, 
94.31%, and 96.30%, respectively). (G) The violin plot shows the variation of similarity index 
in the additional low-resolution and GAN-generated high resolution Raman spectra shows less 
than 25% similarity between low-resolution profile while the GAN-generated instances show 
more than 90% similarity index. (H) The scatter plot from the PCA scores shows the highly 
random fluctuation (more spread in data points) in the low-resolution profile and minimum in 
the GAN-generated high-resolution Raman spectra.  
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Figure S3: The additional low-resolution Raman spectra (10 spectra from each sample class) 
(A) Ranitidine, (C) 4-MBA, and (E) 4-NTP, where the highlighted part in the low-resolution 
spectra shows the spectral differences (similarity index of 15.39%, 22.21%, and 24.05%, 
respectively) within the same sample under identical conditions. This additional low-
resolution Raman spectra (A, C, and E) was fed to the trained GAN model to get the high-
resolution instance. The highlighted part shows that instead of the spectral differences in low-
resolution profile, the model capable to rebuild these lost features and generate the high-
resolution counterpart (B) Ranitidine, (D) 4-MBA, and (F) 4-NTP (similarity index of 96.45%, 
93.13%, and 99.57%, respectively). (G) The violin plot shows the variation of similarity index 
in the additional low-resolution and GAN-generated high resolution Raman spectra shows less 
than 25% similarity between low-resolution profile while the GAN-generated instances show 
more than 90% similarity index. (H) The scatter plot from the PCA scores shows the highly 
random fluctuation (more spread in data points) in the low-resolution profile and minimum in 
the GAN-generated high-resolution Raman spectra.  
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Figure S5: The architecture of the ANN classification network having highest accuracy and 

minimum test loss (model 1) is consists of one input layer, two hidden layers with 17 and 18 

neurons respectively, followed by the classification layer in the end. 

Figure S4: PCA loadings were utilized to observe the differences between the visually similar-

looking spectra from the different sample classes. The Raman spectral features appeared 

visually identical in Loading Plot 1, but there is a major difference between the Raman features 

of the different sample classes as shown in Loading Plot 2. These differences, which are not 

visually apparent in the original low-resolution spectra, can be detected through PCA. This 

shows that the visually similar spectra have hidden features embedded in the noise, which 

can be identified by the GAN. That is why it is able to identify the sample classes without labels 

and generate their high-resolution spectra. Aspirin (black), ibuprofen (red), PCM (blue), 

ranitidine (green), 4-MBA (magenta), and 4-NTP (yellow). 
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Table S3: The best three ANN classification network with their optimized parameters and 

performance during training and testing with additional GAN-generated high-resolution 

dataset. 

 

 

  

 

 

 

 

Name Training 
Function 

No. of 
hidden 
layers/No. 
of Neurons 

Accuracy 
(Training, 
Testing, and 
Validation) 

Accuracy 
(Additional 
dataset, GAN-
generated) 

Loss 
(Additional 
dataset, GAN-
generated) 

Model 1 trainbr [17, 18] 100 % 97.5 % 0.007922 

Model 2 trainbr [8, 16] 100 % 97.4 % 0.008250 

Model 3 trainbr [12, 20] 100 % 97.3 % 0.008335 
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Figure S6: Confusion matrices showing the accuracy of the ANN classification network 

(model1) on high-resolution Raman dataset for (A) training, (B) testing, (C) validation, and (D) 

overall accuracy. The representation for different samples is as follows: (1) aspirin, (2) 

ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP. The confusion matrix shows the 

target class (actual) vs output class (predicted by the model). The similar kind of accuracy was 

observed for both model 2 and model 3. 



S-26 
 

 

 

 

 

 

 

 

 

Figure S7: ROC of the ANN classification network (model1) on high-resolution Raman dataset 

for (A) training, (B) validation, (C) testing, and (D) overall. The closer the curve is to the one, 

the more accurate the results will be for classification. The similar kind of trend was observed 

for both model 2 and model 3. 
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Figure S8: Confusion matrices showing the accuracy of the ANN classification network (model 

1) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a 

classification accuracy of 97.5%.  The representation for different samples is as follows: (1) 

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP. 
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Figure S9: (A) Confusion matrices showing the accuracy of the ANN classification network 

(model 2) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a 

classification accuracy of 97.4%. (B) ROC of the ANN classification network (model 2) for GAN-

generated high-resolution Raman data. The closer the curve is to the one, the more accurate 

the results will be for classification. The representation for different samples is as follows: (1) 

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP. 
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Figure S10: (A) Confusion matrices showing the accuracy of the ANN classification network 

(model 3) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a 

classification accuracy of 97.3%. (B) ROC of the ANN classification network (model 3) for GAN-

generated high-resolution Raman data. The closer the curve is to the one, the more accurate 

the results will be for classification. The representation for different samples is as follows: (1) 

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP. 
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Figure S11: The GAN model was trained, validated, and tested using the 2400 low-resolution Raman spectra from 

6 different class of samples (random splitting of dataset). The trained model for further tested on the additional 

low-resolution dataset (never fed to model) to check for the model accuracy to transform the low-resolution 

instance to a high-resolution Raman spectrum. The trained GAN model transformed the low-resolution to high 

resolution in completely unsupervised way. (A) The low-resolution Raman spectra of the ibuprofen drug, where 

the highlighted part in the low-resolution spectra shows the spectral differences (similarity index of 21% only) 

within the same sample under identical conditions. (B) This low-resolution Raman spectra (A) was fed to the 

trained GAN model to get the high-resolution instance. The highlighted part shows that instead of the spectra 

differences in low-resolution profile, the model capable to rebuild these lost features and generate the high-

resolution counterpart (similarity index of 94%). (C) The violin plot shows the variation of similarity index in the 

additional low-resolution (10 more samples) with similarity index of around 21% and GAN-generated high 

resolution Raman spectra with similarity index of 94%. (D) The scatter plot from the PCA scores shows the highly 

random fluctuation (more spread in data points) in the low-resolution profile and minimum in the GAN-

generated high-resolution Raman spectra. 



S-31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S12: (A) Confusion matrices showing the accuracy of the ANN classification network for 

GAN-generated high-resolution Raman dataset in case of sample-out (ibuprofen sample is not 

a part of the training set during GAN model training) with a classification accuracy of 93.8%. 

(B) ROC of the ANN classification network for GAN-generated high-resolution Raman data. The 

closer the curve is to the one, the more accurate the results will be for classification. The 

representation for different samples is as follows: (1) aspirin, (2) ibuprofen, (3) PCM, (4) 

ranitidine, (5) 4-MBA, and (6) 4-NTP. 
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Table S4: SNR of Raman spectra accumulated using high-resolution (HR), low-resolution (LR), 

and machine learning (ML) generated for different samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Name No. of 
Samples 

Mean Standard 
Deviation 

Median Minimum Maximum 

Aspirin HR 400 23.581 8.795 23.090 12.610 180.808 

Aspirin LR 400 7.995 3.292 7.616 3.946 57.172 

Aspirin ML 400 45.641 9.079 44.747 33.647 162.210 

Ibuprofen HR 400 33.213 10.274 31.840 10.139 177.383 

Ibuprofen LR 400 10.159 6.660 8.202 3.800 59.728 

Ibuprofen ML 400 37.403 4.805 37.172 10.501 55.476 

PCM HR 400 106.312 11.583 106.825 20.517 129.524 

PCM LR 400 9.469 2.241 9.140 4.899 23.589 

PCM ML 400 172.409 14.652 184.890 27.765 314.103 

Ranitidine HR 400 61.021 11.661 60.635 22.270 104.754 

Ranitidine LR 400 15.964 9.972 13.597 5.406 115.825 

Ranitidine ML 400 118.224 17.320 117.960 41.314 187.577 

4-MBA HR 400 83.942 12.214 84.013 38.648 126.680 

4-MBA LR 400 14.466 5.201 13.521 6.171 39.749 

4-MBA ML 400 133.958 15.229 143.864 21.522 232.148 

4-NTP HR 400 85.252 18.124 34101.064 33.839 81.849 

4-NTP LR 400 8.580 5.704 5.463 3.572 37.482 

4-NTP ML 400 128.547 14.136 51419.117 4.889 13.985 
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Figure S13: The process of making a Raman barcode. (A) the Raman spectra of the 4-NTP 

molecule. (B) using the findpeaks function to extract the peak location and FWHM and 

incorporate that information in the barcode. (C) The Raman barcode of the 4-NTP molecule. 
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Table S5: Average similarity index (%) of the low-resolution Raman barcode with the high-resolution 

Raman barcode.  

 

 

Table S6: Standard deviation of similarity index of the low-resolution Raman barcode with the high-

resolution Raman barcode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Low 
High 

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP 

Aspirin 17.253 20.468 18.523 14.258 16.425 18.097 

Ibuprofen 16.811 20.045 18.144 12.733 14.987 16.933 

PCM 18.052 20.481 17.278 14.023 15.810 17.511 

Ranitidine 14.735 16.694 18.386 15.277 14.274 15.309 

4-MBA 16.187 19.520 18.003 13.757 13.717 14.850 

4-NTP 18.629 20.657 19.738 15.556 16.142 18.462 

           Low 
High 

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP 

Aspirin 7.027 7.080 7.954 7.204 7.550 7.497 

Ibuprofen 6.967 7.740 9.024 6.236 7.181 7.046 

PCM 8.804 8.537 7.889 6.852 7.572 7.727 

Ranitidine 6.474 7.666 8.095 6.977 7.076 7.139 

4-MBA 8.592 9.021 9.035 7.214 6.820 7.744 

4-NTP 8.131 8.491 8.798 7.615 7.923 8.163 
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Table S7: Average similarity index (%) of the GAN-generated high-resolution Raman barcode with the 

high-resolution Raman barcode. 

 

 

Table S8: Standard deviation of similarity index of the GAN-generated high-resolution Raman 

barcode with the high-resolution Raman barcode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          GAN 
High 

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP 

Aspirin 97.643 43.901 24.709 24.704 25.304 18.674 

Ibuprofen 42.500 95.250 31.345 46.600 45.705 25.877 

PCM 24.247 32.369 97.344 63.380 21.222 10.673 

Ranitidine 33.932 48.212 64.693 96.442 44.400 60.332 

4-MBA 26.253 44.157 22.200 40.674 98.803 50.456 

4-NTP 18.518 26.869 11.376 12.235 45.305 99.685 

          GAN 
High 

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP 

Aspirin 8.555 9.806 10.239 17.339 11.369 6.581 

Ibuprofen 9.806 11.832 11.800 22.866 15.788 11.041 

PCM 10.239 11.800 15.786 22.521 15.903 13.891 

Ranitidine 17.339 22.866 22.521 23.426 19.815 23.693 

4-MBA 11.369 15.788 15.903 19.815 16.610 16.229 

4-NTP 6.581 11.041 13.891 23.693 16.229 12.011 
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Figure S14: The RadViz clustering between different class of samples (A) high, (B) low-

resolution, and (C) GAN-generated high-resolution Raman spectra showing different 

clustering efficiency. The clustering efficiency of GAN-generated high-resolution Raman 

spectra is significantly improved over its low-resolution counterpart. Aspirin (red), ibuprofen 

(blue), PCM (green), ranitidine (grey), 4-MBA (cyan), and 4-NTP (magenta). 
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