
S-1

Supporting Information

Generative Adversarial Network-driven high-

resolution Raman spectral generation for accurate

molecular feature recognition

Vikas Yadav,‡ Abhay Kumar Tiwari,⊥ Soumik Siddhanta,‡*

‡Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India,

110016

⊥SPATIALTY.AI, Tagya Research Private Limited, Rajankunte, Bangalore 560064

*Corresponding author e-mail: soumik@iitd.ac.in

Supplementary Information (SI) for Analyst.
This journal is © The Royal Society of Chemistry 2025

mailto:soumik@iitd.ac.in

S-2

Table of Contents

Section S1: Material and Methods…….………………………S-3

 S1.1: Raman spectral acquisition…….………………..S-3

 S1.2: Model building for GAN………..…………….S-3

 S1.3: Classification of GAN-generated spectra using Artificial Neural Network (ANN)…………………………………………….……S-6

 S1.4: Identification of the generated spectra of organic compounds via spectral barcode…………………………………………. S-9

 S1.5: Calculation of Signal-to-Noise Ratio………..…….S-10

 S1.6: Process of making Raman barcode……………………………………………………………………………………………………..………………S-11

Table S1: Raman band assignment table………..S-12

Table S2: The model optimization for various parameters…………………………………………………………………………..………………...S-13

Figure S1: The low and high resolution Raman spectra of samples………………………………………………………………………………..S-20

Figure S2: The additional low-resolution Raman spectra of Aspirin, Ibuprofen, and PCM……………………….……………………..S-21

Figure S3: The additional low-resolution Raman spectra of Ranitidine, 4-MBA, and 4-NTP………………………………….………..S-22

Figure S4: PCA loadings from the different sample classes…………………………………………………………………………………………….S23

Figure S5: Architecture of the ANN classification neural network………………………………………………………………………………….S-23

Table S3: Best optimized model for ANN classification………………………………………………………………………………………..………..S-24

Figure S6: Confusion matrices for ANN classification model on high-resolution data………………………………………………….…S-25

Figure S7: ROC of ANN classification network…………………………………………………………………………………………………….…………S-26

Figure S8: Confusion matrices for ANN classification model on GAN-generated data…………………………………………………...S-27

Figure S9: Confusion matrices for other ANN model on GAN-generated data…………………………………………………………..…..S-28

Figure S10: Confusion matrices for other ANN model on GAN-generated data………………………………………………………..……..S-29

Figure S11: The transformation of additional low-resolution Raman spectra to high-resolution……………………….…………..S-30

Figure S12: The GAN model efficiency towards sample-out case…………………………………………………………………………………..S-32

Table S4: Signal-to-Noise Ratio of Raman spectra………………………………………………………………………………………..……………….S-32

Figure S13: The process of making Raman barcode……………………………………………………………………………………………..……….S-33

Table S5: Average similarity index of low-resolution Raman …………………………………………………………………………..…………….S-34

Table S6: Standard deviation of SSIM of low-resolution Raman……………………………………………………………………….……………S-34

Table S7: Average similarity index of GAN-generated Raman…………………………………………………………………………………….…S-35

Table S8: Standard deviation of SSIM GAN-generated Raman……………………………………………………………………………………...S-35

Figure S14: RadViz clustering between low, high, and GAN-generated Raman………………………………………………..……………S-36

S-3

Section S1: Material and Methods

S1.1: Raman spectral acquisition

The LR spectrometer possesses an approximate resolution of 31 cm-1, featuring a grating with

150 lines per millimeter and incorporating a linear CCD array. The collection optics involved

an Integrated Photonics System optical fiber probe coupled to a 785 nm laser (model:

I0785SP100-T040S). The Raman probe has a central fiber for light input and is surrounded by

six fiber endings to collect the scattered light. A ball lens is mounted to focus the light into the

sample and collect the reflected light. The focal length of this probe is 4 mm. Raman spectra

were acquired from aspirin, ibuprofen, paracetamol, ranitidine, 4-MBA, and 4-NTP.

Approximately 400 Raman spectra were collected from each sample at different positions to

account for spectral variability. Another set of high-resolution spectra was collected using the

high-resolution Andor spectrophotometer (HR spectrometer) (Kymera 328i, with quad turret,

328 mm focal length, F/4.1 aperture having CCD camera with resolution < 1 cm-1, grating 1800

lines/mm) with similar acquisition setting, i.e., using a 785 nm laser with acquisition time of

15 s and three accumulations, and 1800 lines/mm grating system. All Raman spectra were

calibrated against the first-order silicon phonon mode at 520.7 cm⁻¹ to ensure alignment of

the wavenumber axis across both low-resolution and high-resolution datasets. The calibration

accuracy was within ±1 cm⁻¹, which is negligible compared to the spectral resolution difference

between instruments (31 cm⁻¹). This calibration step ensured that GAN training was not

affected by systematic shifts in peak positions, thereby preserving the fidelity of spectral

reconstruction. We also accumulated 400 Raman spectra from each sample using the HR

spectrometer. A series of spectra were recorded from each sample to create a comprehensive

dataset for training the GAN. Care was taken to minimize external interferences, and all

measurements were conducted in a controlled environment to maintain consistency. We have

accumulated the spectrum from 200 nm to 1650 nm with 862 wavenumber points in between.

All the spectra were first normalized and used as input for the ML model.

S-4

S1.2: Model builder for GAN

The GAN model employed in this study consisted of a generator network built upon the U-Net

architecture with eight blocks, each comprising convolutional layers, instance normalization

layers, LeakyReLU layers, and tanh activation functions.1 Low-resolution spectra collected with

an integration time of 15 s using an LR spectrometer were used as the input data for the

generator. The generator network consists of multiple convolutional layers designed to

capture the most valuable features and spatial hierarchies in the input data. It is a combination

of an encoder and a decoder structure containing skip connection layers. The generator is

crucial in transforming low-resolution Raman spectra into their high-resolution counterparts.2

Since the generator is a U-Net-based design, it first down-samples all the information from

the low-resolution Raman spectra to lower dimensional space through convolutional layers.

Once the network extracts these valuable features, it starts upscaling and rebuilds the fully

resolved high-resolution Raman spectra using extracted features. The discriminator is a five-

block network and is composed of convolutional layers aimed at discerning between the real

and the generated data. It also employs layers of convolutional, batch normalization, and

Leaky ReLU. All convolutional layers utilize 4×1 spatial filters applied with a stride of size 2.

The output layer of the generator and discriminator has 1×1 spatial filters applied with a stride

of size 1, followed by the Tanh activation function for the generator and the sigmoid activation

function for the discriminator. While the core structure of the GAN follows conventional GAN

architectures, our approach lies in the specific application to Raman spectral data. We have

optimized the network design for spectral resolution enhancement, tailoring convolutional

layers to capture the unique features of low-resolution Raman spectra and optimized training

parameters to ensure rapid convergence and high-resolution spectral generation.

Training parameters such as the learning rate, batch size, and epochs were carefully selected

to optimize model performance. The model is trained over multiple epochs and tries to

optimize the losses. The adversarial training process involved a competitive interplay between

the generator and discriminator, with the former generating spectra to deceive the latter and

the discriminator evolving to discern true high-resolution spectra. The rigorous evaluation

S-5

included generalization of performance on unseen spectra, quantitative metrics like SNR,

spectral resolution, and peak intensity, and comparative analyses against spectra obtained

directly from a high-resolution Raman spectrophotometer.

To train the GAN model, we employed a supervised learning strategy by partitioning the

complete dataset of 2400 Raman spectra into three distinct subsets. Specifically, 70% of the

data (1680 spectra) was allocated for training, enabling the model to learn the mapping

between low-resolution and high-resolution spectral domains. To optimize the learning

process and prevent overfitting, 15% of the data (360 spectra) was reserved as a validation

set and used to monitor model performance during training iterations. Once training was

complete, the remaining 15% (360 spectra) was utilized as an independent test set to evaluate

the generalization capability of the model on previously unseen spectral inputs. During the

training process, the model tries to adjust its weight and biases in the layer, as well as these

losses from both the generator and the discriminator. The loss function, LG from the generator

network, measures how significantly the generator can deceive the discriminator network.

The generator aims to minimize this loss (LG) during the training process to effectively generate

outputs indistinguishable from real high-resolution spectra. The loss function, LD, from the

discriminator network measures the discriminator's ability to classify between real and

generated spectra. The discriminator aims to maximize this loss (LD), improving its capability

to differentiate between real and generated data. The parameters G and D in the loss

functions represent the weights and biases, which are iteratively updated during training to

improve the efficiency accuracy for the generator and discriminator network, respectively. The

interplay between LG and LD creates a dynamic training process where the generator and

discriminator compete to continuously improve in a zero-sum game framework.

The loss functions in the GAN model come from both generator (LG) and discriminator (LD) and

were defined as2

S-6

𝐿𝐺 =
1

𝑁
 ∑ (𝐷(𝐺(𝑠𝑛), 𝑠𝑛) − 1)2 + 𝜆||𝐺(𝑠𝑛) − 𝑥𝑛||

1

𝑁

𝑛=1

𝐿𝐷 =
1

𝑁
 ∑ (𝐷(𝑥𝑛, 𝑠𝑛) − 1)2 + (𝐷(𝐺(𝑠𝑛), 𝑠𝑛))

2𝑁

𝑛=1

Where a high-resolution spectrum is denoted as xn and a corresponding low-resolution

spectrum is denoted as sn, N is the number of training spectra. The hyperparameter λ was

introduced to control the magnitude of the L1 norm, a metric used to quantify the dissimilarity

between vectors.2 L1 norm was chosen to improve the SNR of the processed spectra. To train

our model, we employed the Adam optimization algorithm over 177 epochs, with a learning

rate of 0.0001 and an effective batch size of one.3 These parameters were selected to optimize

the model's performance in reconstructing high-resolution spectra from their low-resolution

counterparts.

Due to the architectural complexity of the proposed GAN model comprising a deep

convolutional generator and discriminator with a large number of trainable parameters, the

training process is computationally intensive. The model was trained over approximately 164

hours on a high-performance computing (HPC) cluster utilizing two parallel GPU nodes, each

equipped with NVIDIA A100 GPUs (40 GB VRAM) and 2× Intel Xeon Platinum 8358 CPUs (32

cores, 2.6 GHz, 8 CPUs). However, once the training phase is completed, the model

demonstrates high inference efficiency. Specifically, it requires only ~88 milliseconds to

generate a high-resolution Raman spectrum from a single low-resolution input of array size

862×1. Furthermore, the inference time scales linearly with the input array size, making the

model well-suited for real-time or high-throughput spectral enhancement applications.

S-7

S1.3: Classification of GAN-generated spectra using Artificial Neural Network

(ANN)

We employed an ANN architecture to classify the generated data and tuned the

hyperparameters such as layer size, number of hidden neurons in each layer, and training

function. The best classification model after optimization of the parameters is the ANN

comprised of four layers: an input layer, two hidden layers with 17 and 18 neurons,

respectively, and an output classification layer with six nodes corresponding to the categories

of the samples (Figure S1). The evaluation of the individual models is given in Table S2. The

ANN model in this study utilized the Bayesian regularization backpropagation algorithm for

training, which iteratively updates the weights and biases based on the Levenberg-Marquardt

optimization.4 Specifically, we employed the 'trainbr' function and assessed network

performance using cross-entropy error and misclassification error metrics.5,6

Cross-entropy loss, also known as log loss, measures the performance of a classification model

whose output is a probability value between 0 and 1. The cross-entropy loss increases as the

predicted probability diverges from the actual label. In essence, it quantifies the difference

between two probability distributions—the true labels and the predicted probabilities. For

single-label classification, the cross-entropy loss is calculated as:

𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑇𝑖𝑐𝑙𝑛𝑌𝑖𝑐

𝐶

𝑐=1

𝑁

𝑖=1

Where N is the number of samples, Tic is the binary indicator (0 or 1) that corresponds to

whether the class label c is the correct classification for the ith sample, and Yic is the predicted

probability of the ith sample being in class c. The misclassification error metric measures the

proportion of incorrect predictions made by the model, i.e., it calculates the ratio of the

number of incorrect predictions to the total number of predictions and is given by the

following equation:

S-8

𝐸 =
1

𝑁
 ∑ 𝐼

𝑁

𝑖=1

 (𝑦𝑖̂ ≠ 𝑦𝑖)

Where N is the total number of samples, 𝑦𝑖̂ is the predicted label, and yi is the true label for

the ith sample.

During the training state of the ANN model, we set the minimum performance gradient to 1 x

e-6 and the maximum validation failure to 6. This means that if the performance of the model

does not change by a margin of 1 x e-6 for six successive epochs, training will stop immediately.

Upon satisfying these convergence criteria, the model is considered fully trained and ready

for testing and validation. To ensure the reliability of our classification model, we conducted a

3-fold validation process by randomly partitioning the dataset into training, testing, and

validation subsets. The input data was normalized, and no additional preprocessing steps were

applied to promote the generalization of the model. Since we have a substantial dataset, we

utilized the entire Raman spectrum without augmentation for both training and testing. High-

resolution data was used to train the model. Once the model was trained, it was further tested

on the generated high-resolution dataset to assess its performance. The model optimization

was based on minimizing mean square error (MSE) and maximizing the coefficient of

correlation (R). Convergence criteria for the model were determined by monitoring changes

in MSE and R over successive iterations, with the training concluding once a predefined

threshold was reached and remained unchanged for a specified number of iterations. The

results were further analyzed through visualization techniques, such as confusion matrices

and receiver operating characteristic (ROC) curves. Lastly, MATLAB scripts were generated to

replicate the results and enable customization of the training process, ensuring reproducibility

and flexibility in future experiments.

The MSE for the classification model was calculated as follows:

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑋𝑖 − 𝑋𝑖̂)

𝑛

𝑖=1

S-9

Wherein n is the number of total observations, Xi is the true class of the sample, and 𝑋𝑖̂ is the

class of the sample predicted by the model.

Although classifiers such as Support Vector Machine (SVM), k-nearest Neighbours (k-NN),

Random Forest (RF), and Gradient Boosting Machines (GBM) can be used, the ANN method

was opted over others because of the complex non-linear relationships inherent in Raman

spectra, which might be challenging for linear models. ANNs can automatically learn features

from raw data, reducing the need for manual feature extraction.7 Beyond classification

accuracy, efforts were made for post-training interpretability, employing feature analysis and

visualization techniques to gain insights into the distinctive spectral attributes defining

different sample categories. For the visualization of different categories of samples, we first

used Principal Component Analysis (PCA) to reduce the data from higher to lower dimensions.

After that, the scores obtained from the PCA were directly incorporated into the Radial

Visualization (RadViz) in Orange software.

S1.4: Identification of the generated spectra of organic compounds via

spectral barcoding

To enable compound classification and automated identification, we adopted the concept of

Raman barcoding for the analyte molecules. A comprehensive Raman spectral barcode library

was initially constructed using the experimentally obtained Raman spectra from the HR

spectrometer. The high-resolution Raman spectra obtained were processed in such a way that

all information regarding peak position and full-width half maxima (FWHM) was integrated

into the form of barcodes. The thickness and position of vertical lines are directly related to

the spectral peak position and FWHM, respectively. An in-house MATLAB script was developed

to preprocess the high-resolution spectra into their respective barcodes. Initially, spectral

normalization was performed within the intensity range of 0 to 1. Subsequently, a peak

searching algorithm identifies peaks in the Raman spectrum based on peak prominence using

the "findpeaks" function. Raman barcodes were employed to verify the identity of the

S-10

unknown sample through barcode comparison. We opted for the Structural Similarity Index

(SSIM) method to measure the similarity between two barcodes. The significance of SSIM lies

in its ability to provide a more accurate and human-perceptual measure of image similarity,

making it particularly useful in fields such as image processing, computer vision, and remote

sensing. SSIM provides a robust and perceptually relevant measure of image similarity,

leveraging the structural information within images to offer a meaningful comparison metric.

SSIM compares two images, 𝐼 and 𝐼′, by considering three components: luminance (𝑙), contrast

(𝑐), and structure (𝑠). The SSIM index is calculated using the following formula:8

𝑆𝑆𝐼𝑀(𝐼, 𝐼′) = [𝑙(𝐼, 𝐼′)]𝛼 ⋅ [𝑐(𝐼, 𝐼′)]𝛽 ⋅ [𝑠(𝐼, 𝐼′)]𝛾

If a significant portion of the barcode signature of the unknown sample matched with the

barcode spectrum from the library, i.e., X, then the unknown sample was identified as X. The

threshold percentage of the unknown sample barcode spectrum required for identification is

referred to as the percentage match criterion. Subsequently, low-resolution Raman spectra

were fed into a GAN model to generate high-resolution spectral outputs. These generated

spectra were then encoded into Raman barcodes and compared against the spectral library to

determine the similarity, quantified as a percentage match between the unknown sample's

Raman barcode and those in the library. Upon scanning the entire library, the model identified

the top-scoring profiles, thereby providing the identity of the unknown sample.

If a significant portion of the barcode signature of the unknown sample matched with the

barcode spectrum from the library, i.e., X, then the unknown sample was identified as X. The

threshold percentage of the unknown sample barcode spectrum required for identification is

referred to as the percentage match criterion. Subsequently, low-resolution Raman spectra

were fed into a GAN model to generate high-resolution spectral outputs. These generated

spectra were then encoded into Raman barcodes and compared against the spectral library to

determine the similarity, quantified as a percentage match between the unknown sample's

S-11

Raman barcode and those in the library. Upon scanning the entire library, the model identified

the top-scoring profiles, thereby providing the identity of the unknown sample.

S1.5: Calculating of Signal-to-Noise Ratio

The SNR for the low, high, and generated high-resolution Raman spectra were calculated by

the formula below:9

𝑆𝑁𝑅 =
𝑅𝑎𝑚𝑎𝑛 𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑛𝑜𝑖𝑠𝑒

𝑆𝑁𝑅 (𝑑𝐵) = 10 𝑙𝑜𝑔10(𝑆𝑁𝑅)

S1.6: Process of making Raman spectral barcode

For the barcoding process, we employed the "findpeaks" function in MATLAB, utilizing a peak

prominence threshold set at 0.3, indicating that peaks with an SNR of 0.3 or higher are

considered valid peaks within the Raman spectrum, discernible from the background noise.

Once all peaks within the Raman spectrum and their FWHM values were identified and

labeled, an in-house MATLAB algorithm was developed to fetch this information and integrate

it into constructing the Raman barcode. Since Raman is a very sensitive technique for the

detection of a sample, and every sample has a distinct Raman fingerprint region, the Raman

barcode will be a unique identity that is assigned to the sample on the basis of Raman spectra.

Consequently, each barcode encapsulates specific information unique to each sample,

facilitating streamlined identification of unknown samples. We have created a spectral

barcode library using high-resolution Raman spectra obtained from a high-resolution

spectrometer. Given that the GAN has successfully transformed low-resolution Raman spectra

into their high-resolution equivalents. The identifier then uses these generated high-

resolution spectra to extract the FWHM and peak positions, converting them into Raman

barcodes. These barcodes are subsequently scanned against the Raman spectral barcode

library, and the resulting matrix represents the percentage similarity index. We use the built-

S-12

in MATLAB function 'SSIM' to calculate the similarity index of the barcode from an unknown

sample against the spectral library.

Table S1: Raman band assignment of different samples: aspirin, ibuprofen, PCM, ranitidine, 4-

MBA, and 4-NTP.10,11,12,13,14

Raman Shift (cm-1) Raman band assignment

1030 Aromatic rings

1200 -OH group substitution

1300 C-C bond

1600 C=O stretching

700-830 γ C-H

1231 C-C ring stretching

858 Ring breathing

791 CNC ring stretching

1319 Amide III

1558 Amide II N-H in plane deformation

1607 skeletal aryl C-C ring stretching

1644 Amide I

841 out-of-plane C-H bending

1441, 1472 aryl C-C stretch

1511 aryl C-H symmetric bends

1587 NO2 asymmetric stretching

1554, 1408 NO2 symmetric stretching

1483, 1376 C-N symmetric stretching

1450 C-C symmetric stretching

1306 C-H in-plane bending

1263, 1248 C-H out of plane bending

S-13

Table S2: The model optimization table for various parameters.

Model
No.

Training
Function

Hidden
Neurons

Test Loss Model
No.

Training
Function

Hidden
Neurons

Test Loss

1 trainlm [6] 0.025981 45 trainlm [8, 19] 0.02637

2 trainlm [3, 6] 0.028332 46 trainlm [8, 20] 0.027906

3 trainlm [4, 6] 0.026843 47 trainlm [9, 10] 0.021962

4 trainlm [4, 10] 0.029288 48 trainlm [9, 11] 0.021414

5 trainlm [4, 11] 0.029144 49 trainlm [9, 13] 0.023985

6 trainlm [4, 12] 0.023078 50 trainlm [9, 15] 0.023128

7 trainlm [4, 15] 0.029084 51 trainlm [9, 16] 0.024728

8 trainlm [5, 10] 0.026997 52 trainlm [9, 17] 0.027728

9 trainlm [5, 11] 0.024478 53 trainlm [9, 18] 0.023069

10 trainlm [5, 12] 0.023113 54 trainlm [9, 19] 0.022849

11 trainlm [5, 13] 0.02859 55 trainlm [10, 14] 0.029717

12 trainlm [5, 14] 0.027967 56 trainlm [10, 15] 0.026676

13 trainlm [5, 16] 0.029415 57 trainlm [10, 17] 0.029091

14 trainlm [5, 18] 0.024838 58 trainlm [10, 20] 0.01982

15 trainlm [5, 19] 0.027732 59 trainlm [11, 14] 0.023211

16 trainlm [5, 20] 0.028819 60 trainlm [11, 15] 0.025901

17 trainlm [6, 7] 0.02589 61 trainlm [11, 16] 0.022485

18 trainlm [6, 9] 0.025331 62 trainlm [11, 17] 0.024967

19 trainlm [6, 10] 0.022424 63 trainlm [11, 18] 0.027611

20 trainlm [6, 11] 0.022461 64 trainlm [11, 19] 0.025603

21 trainlm [6, 12] 0.022132 65 trainlm [11, 20] 0.027897

22 trainlm [6, 13] 0.02589 66 trainlm [12, 14] 0.022319

23 trainlm [6, 14] 0.02808 67 trainlm [12, 16] 0.019906

24 trainlm [6, 15] 0.021693 68 trainlm [12, 17] 0.026521

25 trainlm [6, 16] 0.021657 69 trainlm [12, 18] 0.022467

26 trainlm [6, 17] 0.024102 70 trainlm [12, 19] 0.022086

27 trainlm [6, 18] 0.028086 71 trainlm [13, 16] 0.027623

28 trainlm [6, 19] 0.02007 72 trainlm [13, 17] 0.024226

29 trainlm [6, 20] 0.018801 73 trainlm [13, 20] 0.029899

30 trainlm [7, 9] 0.024369 74 trainlm [14, 15] 0.029871

31 trainlm [7, 10] 0.022259 75 trainlm [14, 16] 0.018615

32 trainlm [7, 11] 0.027534 76 trainlm [14, 17] 0.026844

33 trainlm [7, 12] 0.023687 77 trainlm [15, 16] 0.026204

34 trainlm [7, 13] 0.024874 78 trainlm [15, 17] 0.025169

35 trainlm [7, 14] 0.024143 79 trainlm [16, 18] 0.019279

36 trainlm [7, 16] 0.025499 80 trainlm [16, 20] 0.026439

37 trainlm [7, 18] 0.02622 81 trainlm [17, 18] 0.029288

38 trainlm [7, 19] 0.022173 82 trainlm [17, 20] 0.022176

39 trainlm [8, 9] 0.024886 83 trainlm [18, 19] 0.027043

40 trainlm [8, 10] 0.019097 84 trainlm [3, 4, 7] 0.024825

41 trainlm [8, 13] 0.025541 85 trainlm [3, 4, 20] 0.028591

42 trainlm [8, 14] 0.026174 86 trainlm [3, 5, 16] 0.029862

43 trainlm [8, 15] 0.028847 87 trainlm [3, 6, 17] 0.024444

44 trainlm [8, 17] 0.028759 88 trainlm [3, 7, 12] 0.027207

S-14

Model
No.

Training
Function

Hidden
Neurons

Test Loss Model
No.

Training
Function

Hidden
Neurons

Test Loss

89 trainlm [3, 10, 12] 0.023092 133 trainlm [4, 12, 13] 0.023064

90 trainlm [3, 11, 15] 0.028372 134 trainlm [4, 12, 14] 0.021336

91 trainlm [3, 11, 18] 0.028773 135 trainlm [4, 12, 15] 0.022402

92 trainlm [3, 12, 17] 0.029499 136 trainlm [4, 12, 16] 0.023035

93 trainlm [3, 13, 20] 0.02803 137 trainlm [4, 12, 17] 0.022225

94 trainlm [3, 14, 16] 0.029983 138 trainlm [4, 12, 18] 0.027938

95 trainlm [3, 14, 19] 0.026622 139 trainlm [4, 12, 19] 0.027287

96 trainlm [3, 15, 16] 0.028687 140 trainlm [4, 12, 20] 0.022275

97 trainlm [3, 16, 17] 0.02784 141 trainlm [4, 13, 14] 0.02507

98 trainlm [3, 18, 20] 0.027252 142 trainlm [4, 13, 20] 0.021553

99 trainlm [3, 19, 20] 0.026676 143 trainlm [4, 14, 16] 0.026146

100 trainlm [4, 5, 9] 0.027233 144 trainlm [4, 14, 17] 0.024048

101 trainlm [4, 5, 15] 0.022009 145 trainlm [4, 14, 18] 0.021127

102 trainlm [4, 5, 17] 0.021853 146 trainlm [4, 14, 20] 0.023905

103 trainlm [4, 5, 20] 0.021913 147 trainlm [4, 15, 17] 0.023299

104 trainlm [4, 6, 7] 0.028072 148 trainlm [4, 15, 18] 0.026942

105 trainlm [4, 6, 11] 0.029618 149 trainlm [4, 15, 19] 0.025296

106 trainlm [4, 6, 12] 0.024806 150 trainlm [4, 15, 20] 0.026287

107 trainlm [4, 6, 16] 0.028125 151 trainlm [4, 16, 17] 0.028423

108 trainlm [4, 6, 18] 0.027009 152 trainlm [4, 16, 18] 0.022115

109 trainlm [4, 7, 8] 0.024657 153 trainlm [4, 16, 19] 0.020908

110 trainlm [4, 7, 9] 0.02925 154 trainlm [4, 16, 20] 0.021028

111 trainlm [4, 7, 10] 0.027788 155 trainlm [4, 17, 20] 0.024154

112 trainlm [4, 7, 11] 0.026738 156 trainlm [4, 18, 19] 0.019465

113 trainlm [4, 7, 13] 0.028909 157 trainlm [4, 19, 20] 0.020579

114 trainlm [4, 7, 18] 0.023425 158 trainlm [5, 6, 8] 0.026558

115 trainlm [4, 8, 11] 0.022378 159 trainlm [5, 6, 11] 0.028853

116 trainlm [4, 8, 12] 0.025057 160 trainlm [5, 6, 12] 0.019281

117 trainlm [4, 8, 14] 0.028675 161 trainlm [5, 6, 13] 0.021773

118 trainlm [4, 8, 15] 0.027409 162 trainlm [5, 6, 18] 0.024057

119 trainlm [4, 8, 18] 0.025703 163 trainlm [5, 7, 8] 0.029874

120 trainlm [4, 9, 11] 0.024389 164 trainlm [5, 7, 9] 0.026643

121 trainlm [4, 9, 12] 0.029705 165 trainlm [5, 7, 12] 0.019883

122 trainlm [4, 9, 14] 0.02381 166 trainlm [5, 7, 14] 0.027047

123 trainlm [4, 9, 15] 0.023733 167 trainlm [5, 7, 15] 0.025317

124 trainlm [4, 9, 16] 0.026554 168 trainlm [5, 7, 16] 0.025411

125 trainlm [4, 9, 18] 0.025992 169 trainlm [5, 7, 17] 0.029508

126 trainlm [4, 9, 19] 0.025909 170 trainlm [5, 7, 18] 0.028147

127 trainlm [4, 10, 15] 0.019944 171 trainlm [5, 7, 20] 0.02521

128 trainlm [4, 10, 20] 0.028791 172 trainlm [5, 8, 9] 0.01958

129 trainlm [4, 11, 13] 0.027324 173 trainlm [5, 8, 11] 0.025317

130 trainlm [4, 11, 16] 0.02285 174 trainlm [5, 8, 14] 0.028328

131 trainlm [4, 11, 17] 0.02681 175 trainlm [5, 8, 16] 0.025291

132 trainlm [4, 11, 20] 0.024606 176 trainlm [5, 8, 17] 0.028868

S-15

Model
No.

Training
Function

Hidden
Neurons

Test Loss Model
No.

Training
Function

Hidden
Neurons

Test Loss

177 trainlm [5, 8, 18] 0.024276 221 trainlm [5, 17, 19] 0.022788

178 trainlm [5, 8, 19] 0.024267 222 trainlm [5, 17, 20] 0.025473

179 trainlm [5, 8, 20] 0.026215 223 trainlm [5, 18, 19] 0.029239

180 trainlm [5, 9, 10] 0.023812 224 trainlm [6, 7, 9] 0.02589

181 trainlm [5, 9, 13] 0.027888 225 trainlm [6, 7, 11] 0.019419

182 trainlm [5, 9, 15] 0.026313 226 trainlm [6, 7, 12] 0.025502

183 trainlm [5, 9, 17] 0.020138 227 trainlm [6, 7, 13] 0.019197

184 trainlm [5, 9, 19] 0.022191 228 trainlm [6, 7, 14] 0.028957

185 trainlm [5, 9, 20] 0.026173 229 trainlm [6, 7, 15] 0.02706

186 trainlm [5, 10, 11] 0.028822 230 trainlm [6, 7, 16] 0.027207

187 trainlm [5, 10, 13] 0.022384 231 trainlm [6, 7, 20] 0.023248

188 trainlm [5, 10, 14] 0.029394 232 trainlm [6, 8, 13] 0.027517

189 trainlm [5, 10, 16] 0.027266 233 trainlm [6, 8, 14] 0.022826

190 trainlm [5, 10, 17] 0.02577 234 trainlm [6, 8, 15] 0.025366

191 trainlm [5, 10, 18] 0.026393 235 trainlm [6, 8, 16] 0.028407

192 trainlm [5, 10, 19] 0.025652 236 trainlm [6, 8, 17] 0.026367

193 trainlm [5, 10, 20] 0.026157 237 trainlm [6, 8, 20] 0.022482

194 trainlm [5, 11, 12] 0.02386 238 trainlm [6, 9, 10] 0.020926

195 trainlm [5, 11, 14] 0.022098 239 trainlm [6, 9, 11] 0.020374

196 trainlm [5, 11, 15] 0.029555 240 trainlm [6, 9, 12] 0.022418

197 trainlm [5, 11, 16] 0.020461 241 trainlm [6, 9, 13] 0.021767

198 trainlm [5, 11, 17] 0.020628 242 trainlm [6, 9, 14] 0.026815

199 trainlm [5, 11, 19] 0.024751 243 trainlm [6, 9, 15] 0.028121

200 trainlm [5, 12, 14] 0.025937 244 trainlm [6, 9, 17] 0.022267

201 trainlm [5, 12, 15] 0.01989 245 trainlm [6, 9, 18] 0.024894

202 trainlm [5, 12, 18] 0.026095 246 trainlm [6, 9, 19] 0.028824

203 trainlm [5, 12, 19] 0.028442 247 trainlm [6, 9, 20] 0.021732

204 trainlm [5, 12, 20] 0.020484 248 trainlm [6, 10, 11] 0.028234

205 trainlm [5, 13, 16] 0.028746 249 trainlm [6, 10, 12] 0.019828

206 trainlm [5, 13, 17] 0.025889 250 trainlm [6, 10, 14] 0.025194

207 trainlm [5, 13, 19] 0.025197 251 trainlm [6, 10, 17] 0.025453

208 trainlm [5, 14, 15] 0.022911 252 trainlm [6, 10, 18] 0.025026

209 trainlm [5, 14, 16] 0.025035 253 trainlm [6, 10, 20] 0.020242

210 trainlm [5, 14, 17] 0.023382 254 trainlm [6, 11, 12] 0.027642

211 trainlm [5, 14, 18] 0.023999 255 trainlm [6, 11, 14] 0.02275

212 trainlm [5, 14, 19] 0.023317 256 trainlm [6, 11, 15] 0.024734

213 trainlm [5, 14, 20] 0.027769 257 trainlm [6, 11, 16] 0.026935

214 trainlm [5, 15, 16] 0.025336 258 trainlm [6, 11, 17] 0.026464

215 trainlm [5, 15, 17] 0.017589 259 trainlm [6, 11, 19] 0.025969

216 trainlm [5, 15, 18] 0.029869 260 trainlm [6, 12, 13] 0.020462

217 trainlm [5, 15, 19] 0.021986 261 trainlm [6, 12, 15] 0.024411

218 trainlm [5, 16, 17] 0.026385 262 trainlm [6, 12, 16] 0.020253

219 trainlm [5, 16, 19] 0.025829 263 trainlm [6, 12, 17] 0.027938

220 trainlm [5, 16, 20] 0.020876 264 trainlm [6, 12, 19] 0.029521

S-16

Model
No.

Training
Function

Hidden
Neurons

Test Loss Model
No.

Training
Function

Hidden
Neurons

Test Loss

265 trainlm [6, 12, 20] 0.01787 309 trainlm [7, 11, 14] 0.020266

266 trainlm [6, 13, 14] 0.021036 310 trainlm [7, 11, 15] 0.021781

267 trainlm [6, 13, 17] 0.02246 311 trainlm [7, 11, 16] 0.022872

268 trainlm [6, 13, 18] 0.020947 312 trainlm [7, 11, 17] 0.022325

269 trainlm [6, 13, 19] 0.022918 313 trainlm [7, 11, 18] 0.017691

270 trainlm [6, 13, 20] 0.023887 314 trainlm [7, 11, 20] 0.024701

271 trainlm [6, 14, 15] 0.016728 315 trainlm [7, 12, 13] 0.022607

272 trainlm [6, 14, 17] 0.019388 316 trainlm [7, 12, 14] 0.025172

273 trainlm [6, 14, 18] 0.028385 317 trainlm [7, 12, 17] 0.021569

274 trainlm [6, 15, 16] 0.029194 318 trainlm [7, 12, 18] 0.021456

275 trainlm [6, 15, 17] 0.028094 319 trainlm [7, 12, 19] 0.020822

276 trainlm [6, 15, 18] 0.018153 320 trainlm [7, 12, 20] 0.027649

277 trainlm [6, 15, 19] 0.017323 321 trainlm [7, 13, 15] 0.02543

278 trainlm [6, 16, 18] 0.021136 322 trainlm [7, 13, 16] 0.025565

279 trainlm [6, 16, 19] 0.019058 323 trainlm [7, 13, 17] 0.021566

280 trainlm [6, 16, 20] 0.027041 324 trainlm [7, 13, 19] 0.029497

281 trainlm [6, 17, 18] 0.02074 325 trainlm [7, 13, 20] 0.017737

282 trainlm [6, 17, 19] 0.023886 326 trainlm [7, 14, 15] 0.029436

283 trainlm [6, 17, 20] 0.024397 327 trainlm [7, 14, 17] 0.020334

284 trainlm [6, 19, 20] 0.021832 328 trainlm [7, 14, 19] 0.024916

285 trainlm [7, 8, 9] 0.025043 329 trainlm [7, 14, 20] 0.024732

286 trainlm [7, 8, 10] 0.02491 330 trainlm [7, 15, 16] 0.023846

287 trainlm [7, 8, 11] 0.028189 331 trainlm [7, 15, 17] 0.019015

288 trainlm [7, 8, 12] 0.022613 332 trainlm [7, 15, 18] 0.028382

289 trainlm [7, 8, 15] 0.02604 333 trainlm [7, 15, 19] 0.027256

290 trainlm [7, 8, 16] 0.029233 334 trainlm [7, 15, 20] 0.018687

291 trainlm [7, 8, 17] 0.023669 335 trainlm [7, 16, 17] 0.020564

292 trainlm [7, 9, 10] 0.025732 336 trainlm [7, 16, 18] 0.02146

293 trainlm [7, 9, 14] 0.026594 337 trainlm [7, 16, 19] 0.019281

294 trainlm [7, 9, 15] 0.027803 338 trainlm [7, 16, 20] 0.025033

295 trainlm [7, 9, 16] 0.018886 339 trainlm [7, 17, 18] 0.027956

296 trainlm [7, 9, 18] 0.024837 340 trainlm [7, 17, 19] 0.022673

297 trainlm [7, 9, 19] 0.021873 341 trainlm [7, 17, 20] 0.022018

298 trainlm [7, 9, 20] 0.020977 342 trainlm [7, 18, 19] 0.021809

299 trainlm [7, 10, 11] 0.018921 343 trainlm [7, 18, 20] 0.024642

300 trainlm [7, 10, 12] 0.019845 344 trainlm [8, 9, 10] 0.020977

301 trainlm [7, 10, 13] 0.029102 345 trainlm [8, 9, 13] 0.017213

302 trainlm [7, 10, 14] 0.026593 346 trainlm [8, 9, 15] 0.026605

303 trainlm [7, 10, 16] 0.025991 347 trainlm [8, 9, 16] 0.029001

304 trainlm [7, 10, 17] 0.025178 348 trainlm [8, 9, 17] 0.020083

305 trainlm [7, 10, 18] 0.018749 349 trainlm [8, 9, 18] 0.01756

306 trainlm [7, 10, 19] 0.022861 350 trainlm [8, 9, 19] 0.016675

307 trainlm [7, 10, 20] 0.021184 351 trainlm [8, 10, 11] 0.021337

308 trainlm [7, 11, 13] 0.028366 352 trainlm [8, 10, 13] 0.024706

S-17

Model
No.

Training
Function

Hidden
Neurons

Test Loss Model
No.

Training
Function

Hidden
Neurons

Test Loss

353 trainlm [8, 10, 14] 0.022795 397 trainlm [9, 10, 13] 0.029775

354 trainlm [8, 10, 15] 0.025777 398 trainlm [9, 10, 14] 0.02176

355 trainlm [8, 10, 16] 0.024821 399 trainlm [9, 10, 15] 0.018072

356 trainlm [8, 10, 17] 0.025039 400 trainlm [9, 10, 16] 0.027963

357 trainlm [8, 10, 18] 0.021865 401 trainlm [9, 10, 17] 0.027865

358 trainlm [8, 10, 19] 0.023573 402 trainlm [9, 10, 18] 0.020186

359 trainlm [8, 10, 20] 0.02559 403 trainlm [9, 10, 19] 0.02074

360 trainlm [8, 11, 12] 0.023049 404 trainlm [9, 10, 20] 0.021299

361 trainlm [8, 11, 14] 0.017586 405 trainlm [9, 11, 12] 0.029742

362 trainlm [8, 11, 15] 0.023202 406 trainlm [9, 11, 13] 0.021462

363 trainlm [8, 11, 16] 0.023724 407 trainlm [9, 11, 14] 0.023381

364 trainlm [8, 11, 17] 0.025552 408 trainlm [9, 11, 15] 0.020893

365 trainlm [8, 11, 18] 0.02159 409 trainlm [9, 11, 16] 0.027505

366 trainlm [8, 11, 19] 0.018616 410 trainlm [9, 11, 19] 0.017625

367 trainlm [8, 12, 13] 0.022627 411 trainlm [9, 12, 14] 0.029556

368 trainlm [8, 12, 14] 0.022852 412 trainlm [9, 12, 15] 0.019361

369 trainlm [8, 12, 16] 0.016874 413 trainlm [9, 12, 18] 0.02014

370 trainlm [8, 12, 17] 0.023433 414 trainlm [9, 12, 19] 0.016432

371 trainlm [8, 12, 18] 0.026073 415 trainlm [9, 12, 20] 0.020093

372 trainlm [8, 12, 20] 0.021329 416 trainlm [9, 13, 14] 0.021387

373 trainlm [8, 13, 14] 0.028235 417 trainlm [9, 13, 15] 0.024709

374 trainlm [8, 13, 15] 0.020092 418 trainlm [9, 13, 16] 0.022693

375 trainlm [8, 13, 16] 0.024352 419 trainlm [9, 13, 17] 0.023471

376 trainlm [8, 13, 17] 0.025584 420 trainlm [9, 13, 18] 0.018945

377 trainlm [8, 13, 18] 0.027836 421 trainlm [9, 13, 19] 0.018725

378 trainlm [8, 13, 19] 0.024526 422 trainlm [9, 13, 20] 0.020318

379 trainlm [8, 13, 20] 0.017419 423 trainlm [9, 14, 15] 0.025842

380 trainlm [8, 14, 15] 0.023296 424 trainlm [9, 14, 16] 0.025815

381 trainlm [8, 14, 16] 0.017873 425 trainlm [9, 14, 17] 0.020473

382 trainlm [8, 14, 18] 0.018982 426 trainlm [9, 14, 18] 0.020376

383 trainlm [8, 14, 19] 0.027825 427 trainlm [9, 14, 20] 0.018514

384 trainlm [8, 14, 20] 0.02962 428 trainlm [9, 15, 18] 0.02099

385 trainlm [8, 15, 16] 0.02393 429 trainlm [9, 15, 19] 0.025796

386 trainlm [8, 15, 17] 0.023455 430 trainlm [9, 16, 17] 0.017569

387 trainlm [8, 15, 18] 0.028146 431 trainlm [9, 16, 18] 0.023721

388 trainlm [8, 15, 20] 0.018414 432 trainlm [9, 16, 19] 0.015612

389 trainlm [8, 16, 17] 0.017161 433 trainlm [9, 16, 20] 0.017613

390 trainlm [8, 16, 18] 0.019528 434 trainlm [9, 17, 18] 0.017676

391 trainlm [8, 16, 19] 0.0189 435 trainlm [9, 17, 20] 0.025094

392 trainlm [8, 17, 19] 0.020321 436 trainlm [9, 18, 19] 0.019654

393 trainlm [8, 18, 19] 0.025698 437 trainlm [9, 18, 20] 0.026639

394 trainlm [8, 18, 20] 0.020604 438 trainlm [9, 19, 20] 0.021889

395 trainlm [8, 19, 20] 0.016036 439 trainlm [10, 11, 12] 0.023553

396 trainlm [9, 10, 12] 0.0226 440 trainlm [10, 11, 13] 0.025543

S-18

Model
No.

Training
Function

Hidden
Neurons

Test Loss Model
No.

Training
Function

Hidden
Neurons

Test Loss

441 trainlm [10, 11, 14] 0.029434 485 trainbr [5, 11] 0.014153

442 trainlm [10, 11, 15] 0.02741 486 trainbr [5, 12] 0.014792

443 trainlm [10, 11, 16] 0.021277 487 trainbr [5, 13] 0.014694

444 trainlm [10, 11, 18] 0.019751 488 trainbr [5, 14] 0.011732

445 trainlm [10, 11, 19] 0.023231 489 trainbr [5, 15] 0.011909

446 trainlm [10, 12, 13] 0.018263 490 trainbr [5, 16] 0.014226

447 trainlm [10, 12, 14] 0.019684 491 trainbr [5, 18] 0.011923

448 trainlm [10, 12, 15] 0.017852 492 trainbr [5, 19] 0.012937

449 trainlm [10, 12, 17] 0.019541 493 trainbr [5, 20] 0.010302

450 trainlm [10, 12, 18] 0.019565 494 trainbr [6, 7] 0.012969

451 trainlm [10, 12, 19] 0.022747 495 trainbr [6, 8] 0.012761

452 trainlm [10, 12, 20] 0.026328 496 trainbr [6, 9] 0.013041

453 trainlm [10, 13, 14] 0.02943 497 trainbr [6, 11] 0.017278

454 trainlm [10, 13, 15] 0.018051 498 trainbr [6, 12] 0.010242

455 trainlm [10, 13, 16] 0.024386 499 trainbr [6, 14] 0.01513

456 trainlm [10, 13, 18] 0.029167 500 trainbr [6, 15] 0.012497

457 trainlm [10, 13, 19] 0.022914 501 trainbr [6, 16] 0.009478

458 trainlm [10, 13, 20] 0.025944 502 trainbr [6, 17] 0.016224

459 trainlm [10, 14, 15] 0.021652 503 trainbr [6, 18] 0.011696

460 trainlm [10, 14, 16] 0.022042 504 trainbr [6, 19] 0.012246

461 trainlm [10, 14, 17] 0.020876 505 trainbr [6, 20] 0.010943

462 trainlm [10, 14, 18] 0.028207 506 trainbr [7, 8] 0.008514

463 trainlm [10, 14, 19] 0.027713 507 trainbr [7, 9] 0.01053

464 trainlm [10, 14, 20] 0.021265 508 trainbr [7, 10] 0.008429

465 trainlm [10, 15, 17] 0.017749 509 trainbr [7, 11] 0.009379

466 trainbr [5] 0.014153 510 trainbr [7, 12] 0.01313

467 trainbr [6] 0.015141 511 trainbr [7, 13] 0.009743

468 trainbr [3, 5] 0.014524 512 trainbr [7, 14] 0.014942

469 trainbr [3, 20] 0.019732 513 trainbr [7, 15] 0.010079

470 trainbr [4, 5] 0.01199 514 trainbr [7, 16] 0.011815

471 trainbr [4, 8] 0.013834 515 trainbr [7, 17] 0.012273

472 trainbr [4, 10] 0.018487 516 trainbr [7, 18] 0.012879

473 trainbr [4, 11] 0.018422 517 trainbr [7, 19] 0.011921

474 trainbr [4, 12] 0.015798 518 trainbr [7, 20] 0.013182

475 trainbr [4, 13] 0.014719 519 trainbr [8, 9] 0.010463

476 trainbr [4, 14] 0.015584 520 trainbr [8, 10] 0.016625

477 trainbr [4, 15] 0.013352 521 trainbr [8, 11] 0.011596

478 trainbr [4, 16] 0.015353 522 trainbr [8, 12] 0.011678

479 trainbr [4, 17] 0.01194 523 trainbr [8, 13] 0.011296

480 trainbr [4, 20] 0.014313 524 trainbr [8, 14] 0.010791

481 trainbr [5, 6] 0.011728 525 trainbr [8, 15] 0.015623

482 trainbr [5, 7] 0.012902 526 trainbr [8, 16] 0.00825

483 trainbr [5, 8] 0.012653 527 trainbr [8, 17] 0.011503

484 trainbr [5, 10] 0.011425 528 trainbr [8, 18] 0.012841

S-19

Model
No.

Training
Function

Hidden
Neurons

Test Loss Model
No.

Training
Function

Hidden
Neurons

Test Loss

529 trainbr [8, 19] 0.008527 573 trainbr [13, 18] 0.014217

530 trainbr [8, 20] 0.011129 574 trainbr [13, 19] 0.010559

531 trainbr [9, 10] 0.011004 575 trainbr [13, 20] 0.012732

532 trainbr [9, 11] 0.016558 576 trainbr [14, 15] 0.010466

533 trainbr [9, 12] 0.017143 577 trainbr [14, 17] 0.010628

534 trainbr [9, 13] 0.011186 578 trainbr [14, 18] 0.018114

535 trainbr [9, 14] 0.010405 579 trainbr [14, 19] 0.008564

536 trainbr [9, 15] 0.013585 580 trainbr [14, 20] 0.015524

537 trainbr [9, 16] 0.010382 581 trainbr [15, 16] 0.009957

538 trainbr [9, 17] 0.011499 582 trainbr [15, 17] 0.009106

539 trainbr [9, 18] 0.009907 583 trainbr [15, 18] 0.012153

540 trainbr [9, 19] 0.011854 584 trainbr [15, 19] 0.011849

541 trainbr [9, 20] 0.011469 585 trainbr [15, 20] 0.011703

542 trainbr [10, 11] 0.009864 586 trainbr [16, 17] 0.011123

543 trainbr [10, 12] 0.013366 587 trainbr [16, 18] 0.010621

544 trainbr [10, 13] 0.013657 588 trainbr [16, 19] 0.011178

545 trainbr [10, 14] 0.013183 589 trainbr [16, 20] 0.010883

546 trainbr [10, 15] 0.012048 590 trainbr [17, 18] 0.007922

547 trainbr [10, 16] 0.011199 591 trainbr [17, 19] 0.011424

548 trainbr [10, 17] 0.013794 592 trainbr [17, 20] 0.011471

549 trainbr [10, 18] 0.014148 593 trainbr [18, 19] 0.01041

550 trainbr [10, 19] 0.013545 594 trainbr [18, 20] 0.010753

551 trainbr [10, 20] 0.009219 595 trainbr [19, 20] 0.011261

552 trainbr [11, 12] 0.013531

553 trainbr [11, 13] 0.010876

554 trainbr [11, 14] 0.014877

555 trainbr [11, 15] 0.009262

556 trainbr [11, 16] 0.012353

557 trainbr [11, 17] 0.015619

558 trainbr [11, 18] 0.014471

559 trainbr [11, 19] 0.008801

560 trainbr [11, 20] 0.00969

561 trainbr [12, 13] 0.012397

562 trainbr [12, 14] 0.012743

563 trainbr [12, 15] 0.01034

564 trainbr [12, 16] 0.009265

565 trainbr [12, 17] 0.016304

566 trainbr [12, 18] 0.013469

567 trainbr [12, 19] 0.010983

568 trainbr [12, 20] 0.008335

569 trainbr [13, 14] 0.011

570 trainbr [13, 15] 0.011316

571 trainbr [13, 16] 0.009451

572 trainbr [13, 17] 0.008701

S-20

Aspirin Aspirin

4-MBA 4-MBA

Ranitidine Ranitidine

Ibuprofen Ibuprofen

PCM PCM

4-NTP 4-NTP

Figure S1: The low-resolution (left) and high-resolution (right) 400 Raman spectra each of

different samples taken in solid form using a 785 nm laser source.

S-21

A C E

B D F

PC1

PC
2

G H

Figure S2: The additional low-resolution Raman spectra (10 spectra from each sample class)
(A) Aspirin, (C) Ibuprofen, and (E) PCM, where the highlighted part in the low-resolution
spectra shows the spectral differences (similarity index of 23.96%, 21.01%, and 23.80%,
respectively) within the same sample under identical conditions. This additional low-
resolution Raman spectra (A, C, and E) was fed to the trained GAN model to get the high-
resolution instance. The highlighted part shows that instead of the spectral differences in low-
resolution profile, the model capable to rebuild these lost features and generate the high-
resolution counterpart (B) Aspirin, (D) Ibuprofen, and (E) PCM (similarity index of 96.70%,
94.31%, and 96.30%, respectively). (G) The violin plot shows the variation of similarity index
in the additional low-resolution and GAN-generated high resolution Raman spectra shows less
than 25% similarity between low-resolution profile while the GAN-generated instances show
more than 90% similarity index. (H) The scatter plot from the PCA scores shows the highly
random fluctuation (more spread in data points) in the low-resolution profile and minimum in
the GAN-generated high-resolution Raman spectra.

S-22

A

B

C

D

E

F

PC1

PC
2

G H

Figure S3: The additional low-resolution Raman spectra (10 spectra from each sample class)
(A) Ranitidine, (C) 4-MBA, and (E) 4-NTP, where the highlighted part in the low-resolution
spectra shows the spectral differences (similarity index of 15.39%, 22.21%, and 24.05%,
respectively) within the same sample under identical conditions. This additional low-
resolution Raman spectra (A, C, and E) was fed to the trained GAN model to get the high-
resolution instance. The highlighted part shows that instead of the spectral differences in low-
resolution profile, the model capable to rebuild these lost features and generate the high-
resolution counterpart (B) Ranitidine, (D) 4-MBA, and (F) 4-NTP (similarity index of 96.45%,
93.13%, and 99.57%, respectively). (G) The violin plot shows the variation of similarity index
in the additional low-resolution and GAN-generated high resolution Raman spectra shows less
than 25% similarity between low-resolution profile while the GAN-generated instances show
more than 90% similarity index. (H) The scatter plot from the PCA scores shows the highly
random fluctuation (more spread in data points) in the low-resolution profile and minimum in
the GAN-generated high-resolution Raman spectra.

S-23

Input Output

Hidden layer 1 Hidden layer 2 Output Layer

W

b

W W

b b
862 * 1 6 * 1

Figure S5: The architecture of the ANN classification network having highest accuracy and

minimum test loss (model 1) is consists of one input layer, two hidden layers with 17 and 18

neurons respectively, followed by the classification layer in the end.

Figure S4: PCA loadings were utilized to observe the differences between the visually similar-

looking spectra from the different sample classes. The Raman spectral features appeared

visually identical in Loading Plot 1, but there is a major difference between the Raman features

of the different sample classes as shown in Loading Plot 2. These differences, which are not

visually apparent in the original low-resolution spectra, can be detected through PCA. This

shows that the visually similar spectra have hidden features embedded in the noise, which

can be identified by the GAN. That is why it is able to identify the sample classes without labels

and generate their high-resolution spectra. Aspirin (black), ibuprofen (red), PCM (blue),

ranitidine (green), 4-MBA (magenta), and 4-NTP (yellow).

S-24

Table S3: The best three ANN classification network with their optimized parameters and

performance during training and testing with additional GAN-generated high-resolution

dataset.

Name Training
Function

No. of
hidden
layers/No.
of Neurons

Accuracy
(Training,
Testing, and
Validation)

Accuracy
(Additional
dataset, GAN-
generated)

Loss
(Additional
dataset, GAN-
generated)

Model 1 trainbr [17, 18] 100 % 97.5 % 0.007922

Model 2 trainbr [8, 16] 100 % 97.4 % 0.008250

Model 3 trainbr [12, 20] 100 % 97.3 % 0.008335

S-25

BA

C D

Figure S6: Confusion matrices showing the accuracy of the ANN classification network

(model1) on high-resolution Raman dataset for (A) training, (B) testing, (C) validation, and (D)

overall accuracy. The representation for different samples is as follows: (1) aspirin, (2)

ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP. The confusion matrix shows the

target class (actual) vs output class (predicted by the model). The similar kind of accuracy was

observed for both model 2 and model 3.

S-26

Figure S7: ROC of the ANN classification network (model1) on high-resolution Raman dataset

for (A) training, (B) validation, (C) testing, and (D) overall. The closer the curve is to the one,

the more accurate the results will be for classification. The similar kind of trend was observed

for both model 2 and model 3.

A B

C D

S-27

Figure S8: Confusion matrices showing the accuracy of the ANN classification network (model

1) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a

classification accuracy of 97.5%. The representation for different samples is as follows: (1)

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP.

S-28

Figure S9: (A) Confusion matrices showing the accuracy of the ANN classification network

(model 2) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a

classification accuracy of 97.4%. (B) ROC of the ANN classification network (model 2) for GAN-

generated high-resolution Raman data. The closer the curve is to the one, the more accurate

the results will be for classification. The representation for different samples is as follows: (1)

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP.

A B

0.95

1

B

S-29

Figure S10: (A) Confusion matrices showing the accuracy of the ANN classification network

(model 3) for the additional dataset, i.e., GAN-generated high-resolution Raman data with a

classification accuracy of 97.3%. (B) ROC of the ANN classification network (model 3) for GAN-

generated high-resolution Raman data. The closer the curve is to the one, the more accurate

the results will be for classification. The representation for different samples is as follows: (1)

aspirin, (2) ibuprofen, (3) PCM, (4) ranitidine, (5) 4-MBA, and (6) 4-NTP.

A

0.95

1
B

S-30

Input (low-resolution) Output (GAN-generated high-resolution)

After Training and Validation of the GAN model

A
dd

it
io

na
l d

at
as

et
 (n

ot
 in

cl
ud

ed
 in

 m
od

el
 tr

ai
ni

ng
)

PC
2

PC1

A

C D

Sp
ec

tr
al

 v
ar

ia
ti

on
s

in
 th

e
ad

di
ti

on
al

da

ta
se

t

B

Figure S11: The GAN model was trained, validated, and tested using the 2400 low-resolution Raman spectra from

6 different class of samples (random splitting of dataset). The trained model for further tested on the additional

low-resolution dataset (never fed to model) to check for the model accuracy to transform the low-resolution

instance to a high-resolution Raman spectrum. The trained GAN model transformed the low-resolution to high

resolution in completely unsupervised way. (A) The low-resolution Raman spectra of the ibuprofen drug, where

the highlighted part in the low-resolution spectra shows the spectral differences (similarity index of 21% only)

within the same sample under identical conditions. (B) This low-resolution Raman spectra (A) was fed to the

trained GAN model to get the high-resolution instance. The highlighted part shows that instead of the spectra

differences in low-resolution profile, the model capable to rebuild these lost features and generate the high-

resolution counterpart (similarity index of 94%). (C) The violin plot shows the variation of similarity index in the

additional low-resolution (10 more samples) with similarity index of around 21% and GAN-generated high

resolution Raman spectra with similarity index of 94%. (D) The scatter plot from the PCA scores shows the highly

random fluctuation (more spread in data points) in the low-resolution profile and minimum in the GAN-

generated high-resolution Raman spectra.

S-31

Figure S12: (A) Confusion matrices showing the accuracy of the ANN classification network for

GAN-generated high-resolution Raman dataset in case of sample-out (ibuprofen sample is not

a part of the training set during GAN model training) with a classification accuracy of 93.8%.

(B) ROC of the ANN classification network for GAN-generated high-resolution Raman data. The

closer the curve is to the one, the more accurate the results will be for classification. The

representation for different samples is as follows: (1) aspirin, (2) ibuprofen, (3) PCM, (4)

ranitidine, (5) 4-MBA, and (6) 4-NTP.

A B

S-32

Table S4: SNR of Raman spectra accumulated using high-resolution (HR), low-resolution (LR),

and machine learning (ML) generated for different samples.

Name No. of
Samples

Mean Standard
Deviation

Median Minimum Maximum

Aspirin HR 400 23.581 8.795 23.090 12.610 180.808

Aspirin LR 400 7.995 3.292 7.616 3.946 57.172

Aspirin ML 400 45.641 9.079 44.747 33.647 162.210

Ibuprofen HR 400 33.213 10.274 31.840 10.139 177.383

Ibuprofen LR 400 10.159 6.660 8.202 3.800 59.728

Ibuprofen ML 400 37.403 4.805 37.172 10.501 55.476

PCM HR 400 106.312 11.583 106.825 20.517 129.524

PCM LR 400 9.469 2.241 9.140 4.899 23.589

PCM ML 400 172.409 14.652 184.890 27.765 314.103

Ranitidine HR 400 61.021 11.661 60.635 22.270 104.754

Ranitidine LR 400 15.964 9.972 13.597 5.406 115.825

Ranitidine ML 400 118.224 17.320 117.960 41.314 187.577

4-MBA HR 400 83.942 12.214 84.013 38.648 126.680

4-MBA LR 400 14.466 5.201 13.521 6.171 39.749

4-MBA ML 400 133.958 15.229 143.864 21.522 232.148

4-NTP HR 400 85.252 18.124 34101.064 33.839 81.849

4-NTP LR 400 8.580 5.704 5.463 3.572 37.482

4-NTP ML 400 128.547 14.136 51419.117 4.889 13.985

S-33

A B

C

Figure S13: The process of making a Raman barcode. (A) the Raman spectra of the 4-NTP

molecule. (B) using the findpeaks function to extract the peak location and FWHM and

incorporate that information in the barcode. (C) The Raman barcode of the 4-NTP molecule.

S-34

Table S5: Average similarity index (%) of the low-resolution Raman barcode with the high-resolution

Raman barcode.

Table S6: Standard deviation of similarity index of the low-resolution Raman barcode with the high-

resolution Raman barcode.

 Low
High

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP

Aspirin 17.253 20.468 18.523 14.258 16.425 18.097

Ibuprofen 16.811 20.045 18.144 12.733 14.987 16.933

PCM 18.052 20.481 17.278 14.023 15.810 17.511

Ranitidine 14.735 16.694 18.386 15.277 14.274 15.309

4-MBA 16.187 19.520 18.003 13.757 13.717 14.850

4-NTP 18.629 20.657 19.738 15.556 16.142 18.462

 Low
High

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP

Aspirin 7.027 7.080 7.954 7.204 7.550 7.497

Ibuprofen 6.967 7.740 9.024 6.236 7.181 7.046

PCM 8.804 8.537 7.889 6.852 7.572 7.727

Ranitidine 6.474 7.666 8.095 6.977 7.076 7.139

4-MBA 8.592 9.021 9.035 7.214 6.820 7.744

4-NTP 8.131 8.491 8.798 7.615 7.923 8.163

S-35

Table S7: Average similarity index (%) of the GAN-generated high-resolution Raman barcode with the

high-resolution Raman barcode.

Table S8: Standard deviation of similarity index of the GAN-generated high-resolution Raman

barcode with the high-resolution Raman barcode.

 GAN
High

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP

Aspirin 97.643 43.901 24.709 24.704 25.304 18.674

Ibuprofen 42.500 95.250 31.345 46.600 45.705 25.877

PCM 24.247 32.369 97.344 63.380 21.222 10.673

Ranitidine 33.932 48.212 64.693 96.442 44.400 60.332

4-MBA 26.253 44.157 22.200 40.674 98.803 50.456

4-NTP 18.518 26.869 11.376 12.235 45.305 99.685

 GAN
High

Aspirin Ibuprofen PCM Ranitidine 4-MBA 4-NTP

Aspirin 8.555 9.806 10.239 17.339 11.369 6.581

Ibuprofen 9.806 11.832 11.800 22.866 15.788 11.041

PCM 10.239 11.800 15.786 22.521 15.903 13.891

Ranitidine 17.339 22.866 22.521 23.426 19.815 23.693

4-MBA 11.369 15.788 15.903 19.815 16.610 16.229

4-NTP 6.581 11.041 13.891 23.693 16.229 12.011

S-36

Figure S14: The RadViz clustering between different class of samples (A) high, (B) low-

resolution, and (C) GAN-generated high-resolution Raman spectra showing different

clustering efficiency. The clustering efficiency of GAN-generated high-resolution Raman

spectra is significantly improved over its low-resolution counterpart. Aspirin (red), ibuprofen

(blue), PCM (green), ranitidine (grey), 4-MBA (cyan), and 4-NTP (magenta).

P
C

5 P
C

2
PC7

PC4

PC10

P
C

3

PC1

P
C

2

PC9
P

C
4

PC5

P
C

2

A B C

S-37

REFERENCES

(1) Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A. A. Image-to-image translation with conditional
adversarial networks. 2017, pp 1125-1134.
(2) Ma, X.; Wang, K.; Chou, K.; Li, Q.; Lu, X. Conditional Generative Adversarial Network for
Spectral Recovery to Accelerate Single-Cell Raman Spectroscopic Analysis. Analytical
Chemistry 2022, 94 (2), 577-582, Article. DOI: 10.1021/acs.analchem.1c04263.
(3) Da, K. A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014.
(4) MACKAY, D. BAYESIAN INTERPOLATION. Neural Computation 1992, 4 (3), 415-447, Note. DOI:
10.1162/neco.1992.4.3.415.
(5) Nasr, G. E.; Badr, E. A.; Joun, C. Cross entropy error function in neural networks: Forecasting
gasoline demand. 2002, pp 381-384.
(6) Aurelio, Y. S.; De Almeida, G. M.; de Castro, C. L.; Braga, A. P. Learning from imbalanced data
sets with weighted cross-entropy function. Neural processing letters 2019, 50, 1937-1949.
(7) Qi, Y.; Hu, D.; Jiang, Y.; Wu, Z.; Zheng, M.; Chen, E.; Liang, Y.; Sadi, M.; Zhang, K.; Chen, Y.
Recent Progresses in Machine Learning Assisted Raman Spectroscopy. Advanced Optical
Materials 2023, 11 (14), Review. DOI: 10.1002/adom.202203104.
(8) Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility
to structural similarity. Ieee Transactions on Image Processing 2004, 13 (4), 600-612, Article. DOI:
10.1109/TIP.2003.819861.
(9) Pan, L.; Pipitsunthonsan, P.; Zhang, P.; Daengngam, C.; Booranawong, A.;
Chongcheawchamnan, M. Noise reduction technique for Raman spectrum using deep learning
network. 2020, IEEE: pp 159-163.
(10) Kassu, A.; Robinson, D. Vibrational Spectroscopy of Pain Relievers: Traditional and Remote
Raman Techniques. Journal of Analytical Sciences, Methods and Instrumentation 2023, 13 (3),
27-37.
(11) Ramesh, P.; Gunasekaran, S.; Ramkumar, G. R. Molecular Structure, Vibrational Spectra, UV-
Visible and NMR Spectral Analysis on Ranitidine Hydrochloride using AB Initio and DFT Methods.
International Journal of Current Research and Academic Review 2015, 3 (11), 117-138.
(12) Thorley, F.; Baldwin, K.; Lee, D.; Batchelder, D. Dependence of the Raman spectra of drug
substances upon laser excitation wavelength. Journal of Raman Spectroscopy 2006, 37 (1-3),
335-341, Article. DOI: 10.1002/jrs.1446.
(13) Chen, S.; Fan, J.; Lv, M.; Hua, C.; Liang, G.; Zhang, S. Internal Standard Assisted Surface-
Enhanced Raman Scattering Nanoprobe with 4-NTP as Recognition Unit for Ratiometric Imaging
Hydrogen Sulfide in Living Cells. Analytical Chemistry 2022, Article|Early Access. DOI:
10.1021/acs.analchem.2c02961.
(14) Marques, F.; Alves, R.; dos Santos, D.; Andrade, G. Surface-enhanced Raman spectroscopy
of one and a few molecules of acid 4-mercaptobenzoic in AgNP enabled by hot spots generated
by hydrogen bonding. Physical Chemistry Chemical Physics 2022, 24 (44), 27449-27458, Article.
DOI: 10.1039/d2cp03375e.

