Supporting information

A dual-mode colorimetric/photoelectrochemical sensing platform derived from the decomposition of CuHPT for glutathione detection

Haotian Xue, Xianwen Kan*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.

*Corresponding author:

Xianwen Kan

Email: kanxw@mail.ahnu.edu.cn

Fig. S1 XRD pattern of CoS.

Fig. S2 High-resolution XPS spectrum of (A) S 2p, (B) Co 2p, (C) In 3d and (D) Cd 3d in the prepared samples, respectively.

Fig. S3 Photocurrent response curve of CoS/In-CdS (2 mg/mL) with 500s.

Fig. S4. Effects of (A) weight ratio between CoS and In-CdS on the photocurrent response, The optimization of (B) the CoS/In-CdS concentration, (C) 100 μ M GSH incubation time on the PEC sensor. (D) The optimization of TMB + H₂O₂ + CuHPT + GSH (1 mM) absorbance at different incubation times. Error bars represented standard deviations (n = 3).

Fig. S5 (A) Storage stability of PEC sensor, (B) Reproducibility of PEC sensor. Error bars represented standard deviations (n = 3).

Method	Detection limit (µM)	Liner range (µM)	Reference
PEC	3.21	5-80	1
PEC	2.83	5-200	2
PEC	0.82	1-100	3
ECL	0.9	5-200	4
ECL	0.44	1-200	2
Colorimetric	7.00	20-460	5
Colorimetric	0.23	0.5-60	6
Fluorometric	0.48	1-300	7
Fluorometric	0.20	10-25	8
PEC	0.11	0.5-800	This work
Colorimetric	18	50-1200	This work

 Table S1 Comparison of different GSH detection methods.

Samples	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
1	200	202.73	101.4	3.5
2	300	288.43	96.1	3.0
3	400	412.70	103.2	4.5

 Table S2 Colorimetric determination of GSH content in human serum...

Samples	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
1	0	6.36		2.2
2	10	15.74	93.8	2.0
3	25	31.76	101.6	1.6
4	50	54.62	96.5	1.2

Table S3 Photoelectrochemical determination of GSH content in human serum

References

- 1 Y. Zhou, Y. Shi, F.-B. Wang and X.-H. Xia, Anal. Chem., 2019, 91, 2759-2767.
- 2 J. Ge, Y. Zhao, X. Gao, H. Li and G. Jie, Anal. Chem., 2019, 91, 14117-14124.
- 3 D. Liu, X. Bai, J. Sun, D. Zhao, C. Hong and N. Jia, Sens. Actuators B Chem., 2022, **359**, 131542.
- 4 F. Yang, X.-Y. Jiang, W.-B. Liang, Y.-Q. Chai, R. Yuan and Y. Zhuo, *Anal. Chem.*, 2020, **92**, 2566-2572.
- 5 J. Li, C. Cao, H. Li, S. Chen, X. Gong and S. Wang, Sens. Actuators B Chem., 2024, 409, 135597.
- 6 X. Lai, Y. Shen, S. Gao, Y. Chen, Y. Cui, D. Ning, X. Ji, Z. Liu and L. Wang, *Biosens. Bioelectron.*, 2022, **213**, 114446.
- 7 X. Wang, Y. Zhang, Y. Jin, S. Wang, Z. Zhang, T. Zhou, G. Zhang and F. Wang, J. Photochem. Photobiol. A Chem., 2023, 435, 114264.
- 8 C. Cao, Y. Feng, H. Li, Y. Yang, X. Song, Y. Wang, G. Zhang, W. Dou and W. Liu, *Talanta*, 2020, **219**, 121353.