Electronic supplementary information

Transition metal doping boosting paper-based photoelectrochemical immunosensing for neurofilament light chain protein detection

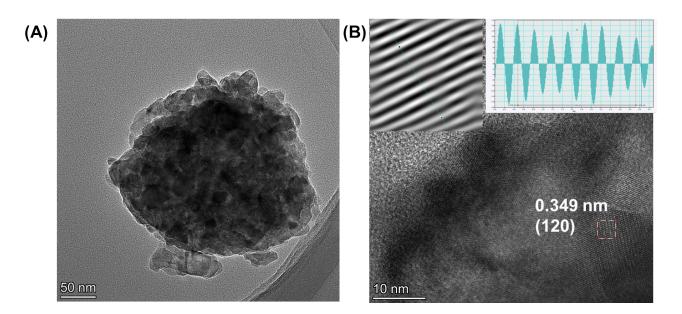
Cheng-Hua Xu^{a,b}, An-Yang Tao^{a,b}, Mei-Qing Meng^b, Xi-Le Zhang^{a,b}, Cheng Fang^{a,b}, Feng-Zao Chen^{a,b,*}, De-Man Han^{b,*}

E-mails: chenfengzao@tzc.edu.cn (F.-Z. Chen); hdmtzc@126.com (D.-M. Han)

^a Department of Neurology, Taizhou First People's Hospital (Taizhou University Affiliated First People's Hospital), Taizhou University, Zhejiang 318000, P. R. China

^b Zhejiang Key Laboratory of New Drug Development for Central Nervous System Diseases, Taizhou University, Zhejiang 318000, P. R. China

^{*} Corresponding authors:


TABLE OF CONTENTS

Experimental Characterization	S3
Preparation of mAb ₁ -Coated Microplate	S3
Preparation of Glucose Oxidase and Detection Antibody-Conjugated Au NP (GOx-Au NP-pAb ₂)	S3
Figure S1-S2	S4
Figure S3-S4	S5
Figure S5-S6	S6
Figure S7-S8	S7
Figure S9-S10	S8
Figure S11-S12	S9
Table S1	S10
Reference	S11

Experimental Characterization. The confirmation of morphology was obtained under a transmission electron microscope (TEM, FEI Talos F200s). UV-vis absorption spectra were recorded by the Infinite M200 Pro NanoQuant (Tecan, Switzerland).

Preparation of mAb₁-Coated Microplate. Monoclonal antibodies to NEFL were prepared and bonded in microtiter plates as follows. The purchased mAb₁ (50 μL per well, 10 μg mL⁻¹) was added into a high-binding 96-well microplate containing sodium carbonate buffer (0.05 M, pH 9.6), and then incubated 24 h at 4 °C. A plastic film is wrapped over the microplate to prevent evaporation of the liquid. The completed incubated microplates were removed and washed three times with buffer (pH 7.4) buffer containing 0.05% Tween 20 (v/v). This was followed by incubation for 1 h by adding closure buffer (300 uL of PBS solution per well (10 mM, pH 7.4) including 1.0 wt % BSA). The aforementioned prepared microtiter plates were prepared for the NEFL assay.

Preparation of Glucose Oxidase and Detection Antibody-Conjugated Au NP (GOx-Au NP-pAb₂). GOx-Au NP-pAb₂ conjugates were prepared according to our previous reports. Firstly, gold colloids (5.0 mL, 5.0 ng mL⁻¹) were adjusted to pH 9.5 by using 0.1 M Na₂CO₃ aqueous solution. Then, 200 μL of GOx (0.5 mg mL⁻¹) and 50 μL of pAb₂ (0.5 mg mL⁻¹) were injected into colloidal gold nanoparticles and gently shaken for 60 min at room temperature on a shaker (MS, IKA GmbH, Staufen, Germany). 100 μL of polyethylene glycol (1.0 wt %) was added into the suspension and the mixture was further incubated for 12 h at 4 °C. Finally, GOx-Au NP-pAb₂ conjugates were obtained by centrifugation at 4 °C (10 min, 13 000 g), and dispersed in 1.0 mL of 2 mM sodium carbonate solution ($C_{\text{[Au NP]}} \approx 25$ ng mL⁻¹) containing 1.0 wt % BSA and 0.1 wt % sodium azide, pH 7.4, and stored at 4 °C for further use.

Figure S1. (A) TEM image of synthesized self-assembled TiO₂ nanoparticles and (B) corresponding high-resolution TEM image.

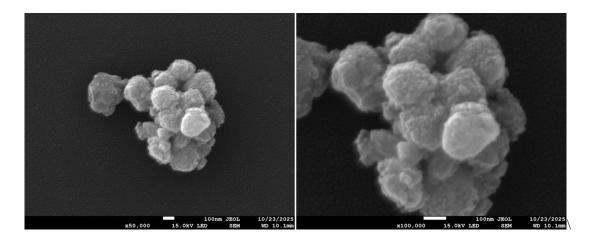


Figure S2. SEM image of synthesized self-assembled TiO_2 nanoparticles and corresponding high-resolution (10000×) SEM image.

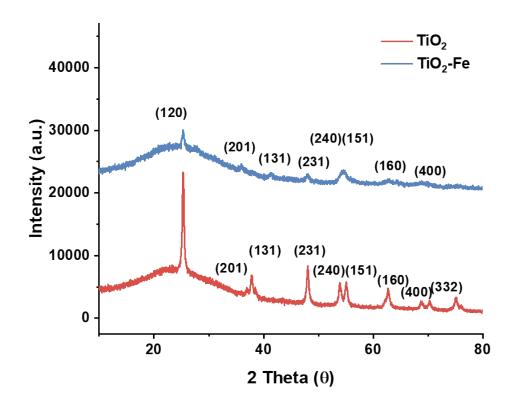


Figure S3. XRD patterns of synthesized self-assembled TiO₂ nanoparticles and TiO₂-Fe.

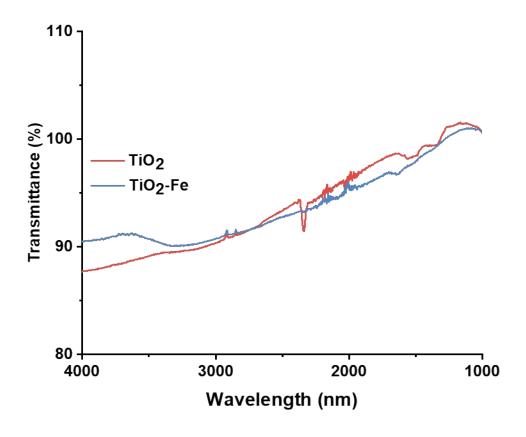


Figure S4. FT-IR spectra of synthetically self-assembled TiO₂ nanoparticles and TiO₂-Fe

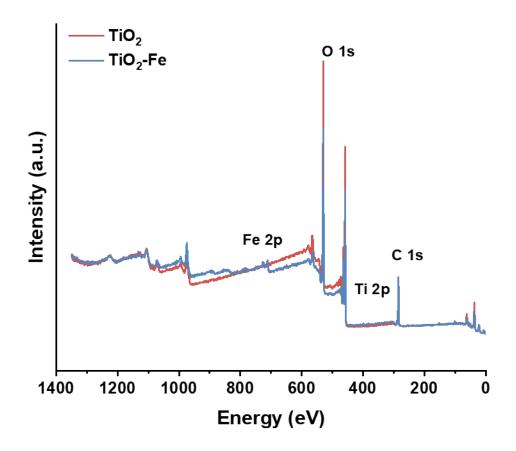


Figure S5. XPS spectra of synthesized self-assembled TiO₂ nanoparticles and TiO₂-Fe.

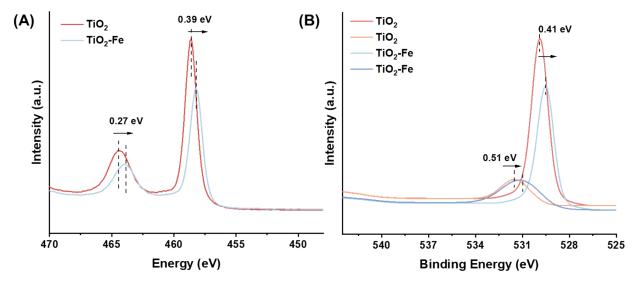


Figure S6. High-resolution XPS spectra of (A) Ti and (B) O.

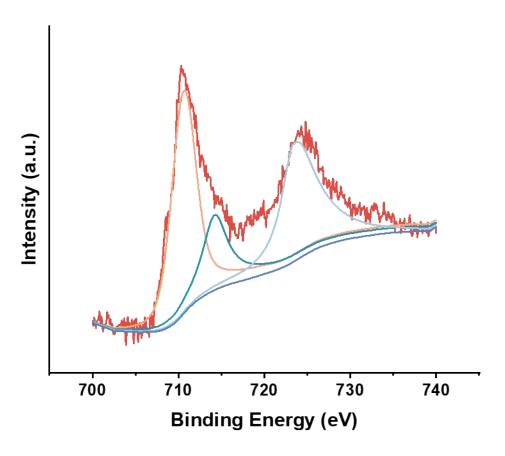


Figure S7. High-resolution fine-scale XPS spectra of the Fe 2p orbital.

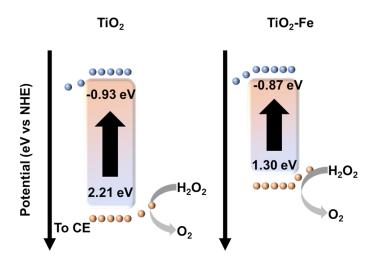
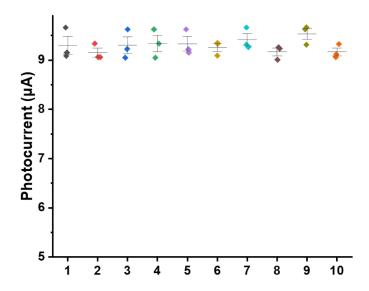



Figure S8. Schematic diagram of energy level orbitals for the synthesized photocatalyst.

Figure S9. Photocurrent stability after repeated bending cycles, measured at the peak photocurrent excitation value.

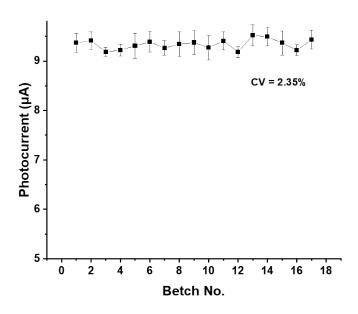


Figure S10. Batch-to-batch stability data.

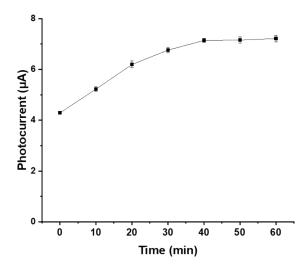
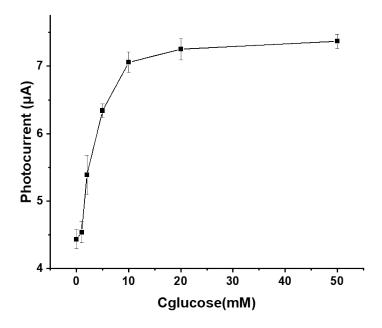



Figure S11. Optimized data for enzyme reaction catalysis time, using a 1 ng/mL sample as an example.

Figure S12. Optimization data for enzyme reaction substrate concentration, using a 1 ng/mL sample as an example.

Table S1. Comparison table of dynamic response range and LOD values for neurofilament light chain protein detection methods.

Detection method	Dynamic range	LOD	Ref.
Fluorescent Immunoassay Sensor	125 - 1500 pM	24 fM	1
ELISA	$39 - 5000 \text{ pg mL}^{-1}$	-	2
Electrochemical	5.22 – 1000 pg mL ⁻¹	5.22 pg mL ⁻¹	3
Electrochemical	$0.01 - 1.5 \text{ ng mL}^{-1}$	0.01 ng mL ⁻¹	4
Fluorescence	0.05 - 1000 pg mL ⁻¹	0.012 pg mL^{-1}	5
Electrochemical	0.01 - 200 ng mL ⁻¹	7 ng mL ⁻¹	This work

Reference

- 1. Q. Song, H. Zhang, J. Kong, M. S. Wong and H.-W. Li, Microchim. Acta, 2025, 192, 131.
- 2. L. Gaetani, K. Höglund, L. Parnetti, F. Pujol-Calderon, B. Becker, P. Eusebi, P. Sarchielli, P. Calabresi, M. Di Filippo, H. Zetterberg and K. Blennow, *Alzheimers Res. Ther.*, 2018, **10**, 8.
- 3. Z. Huang, L. Zhang, Y. Dou, X. Liu, S. Song, H. Jiang and C. Fan, Anal. Chem., 2024, 96, 10332-10340.
- 4. O. Adil and M. H. Shamsi, 2023, 13, 247.
- 5. R. Jahani, S. Munusamy, H. Zheng, J. Kong, J. Chen, S. Zhou and X. Guan, ACS Chemical Neuroscience, 2025, 16, 2844-2853.