Cascaded catalytic hairpin 3D DNA walker-assisted dual-

targeting biomimetic sensor for intracellular microRNA

imaging

Lanlan Jia^{a,b}, Jialin Guo^{a,b}, Min Li^{a,b}, Tingting Zhang^{a,b}, Yihan Sun^{a,b},

Yuxin Chen^{a,b}, Xiaoyu Xie^{a,b}, Qi Hu^{a,b,*}

^a School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an,

710061, China

^b Shaanxi Engineering Research Center of Cardiovascular Drugs Screening &

1

Analysis, Xi'an, 710061, China

*Corresponding Author

Email: huqi77@xjtu.edu.cn (Q. Hu)

Tel.: +86 29 82656788

Table of Contents

Experimental section:

Materials

Apparatus and measurements

Cell culture

Supporting figures:

Figure S1. Characterization of AuNPs-H1.

Figure S2. The effect of different numbers of bases of H1 5' end extension on the detection efficiency of AuNPs-H1

Figure. S3. The Fluorescence intensity of the DNA walker in the presence or absence of miRNA-21.

Figure S4. Cell viability of MCF-7 and MCF-10A cells treated with different concentrations of AuNPs-H1/H2@TCM-apt.

Figure S5. CLSM images and fluorescence intensity of MCF-7 cells treated with AuNPs-H1/H2@CM $_{MCF-10A}$.

Figure S6. CLSM images of miRNA-21 in MCF-7 cells treated with or without miR-21 inhibitor.

Supporting table:

Table S1 Comparison of different methods for miRNA detection

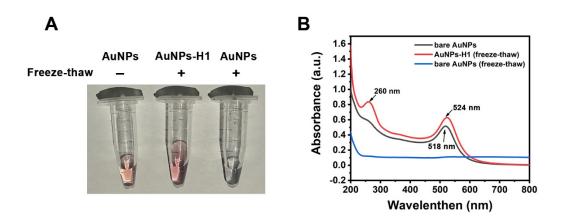
Table S2 The details of sequences used in the research.

References

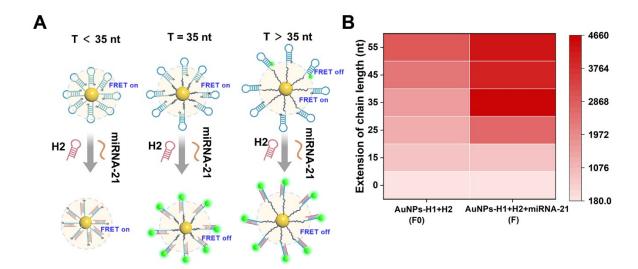
Experimental section:

1. *Materials*

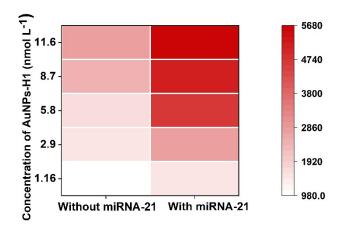
Gold(III) chloride hydrate (HAuCl₄·4H₂O) and sodium citrate dihydrate (C₆H₅Na₃O₇·2H₂O) were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). Cell Counting Kit-8 (CCK-8) was offered by Yeasen Biotechnology Co., Ltd. (Shanghai, China). The 1 × TE buffer [10 mmol L⁻¹ Tris-HCl, 1.0 mmol L⁻¹ ethylenediaminetetraacetic acid (EDTA), pH 7.8-8.2] and DEPC water were purchased from Sangon Biotechnology Inc. (Shanghai, China). All DNA and RNA sequences (Table S2) were synthesized and purified by Sangon Biotechnology Inc. (Shanghai, China).

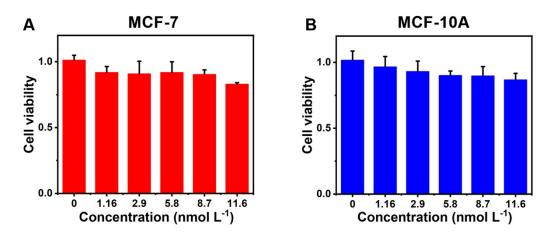

2. Apparatus and measurements

After ambient air-drying, the morphology of prepared materials was characterized using transmission electron microscope (TEM; JEOL JEM-2100Plus; Tokyo, Japan; 200 kV) and scanning electron microscope (SEM; JEOL JCM-5700; Welwyn Garden City, UK). The hydrodynamic size and zeta potential of prepared materials were measured in PBS (PH 7.4) at 25 °C using dynamic light scattering (DLS; Malvern Zetasizer Nano ZSE; Malvern, UK). The UV-vis absorption spectra were recorded on a UV-3200 spectrophotometer (Mapada, Shanghai, China). Fluorescence spectra were obtained on a RF-6000 fluorophotometer (Shimadzu, Kyoto, Japan). Confocal laser scanning microscopy (CLSM; TCS SP8 STED 3X, Leica; Solms, Germany) was used to obtain cell images.


3. Cell culture

MCF-7 and MCF-10A cells were obtained from Wuhan Pricella Biotechnology Co., Ltd. (Wuhan, China). Cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 1% penicillin–streptomycin and 10% fetal bovine serum (FBS) at 37 °C in a humidified 5% CO₂ incubator.


Supporting figures


Figure S1. Characterization of AuNPs-H1. (A) Photographs showing the color of AuNPs before and after a freeze-thaw cycle in the presence or absence of H1. (B) UV-vis absorption spectra of bare AuNPs, bare AuNPs after freeze-thaw, and AuNPs-H1 after freeze-thaw.

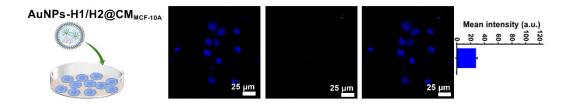

Figure S2. The effect of different numbers of bases of H1 5' end extension on the detection efficiency of AuNPs-H1. (A) Schematic diagram. (B) Fluorescence intensity of the DNA walker with different length of H1 strand.

Figure. S3. The Fluorescence intensity of the DNA walker in the presence or absence of miRNA-21.

Figure S4. Cell viability of (A) MCF-7 and (B) MCF-10A cells treated with different concentrations of AuNPs-H1/H2@TCM-apt. All bars represent means \pm SD (n = 3).

Figure S5. CLSM images and fluorescence intensity of MCF-7 cells treated with AuNPs-H1/H2@CM $_{MCF-10A}$. Scale bar = 25 μm .

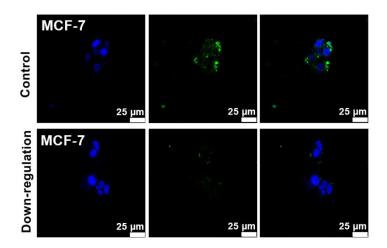


Figure S6. CLSM images of miRNA-21 in MCF-7 cells treated with or without miR-21 inhibitor. Scale bar = $25 \mu m$.

Supporting tables

Table S1 Comparison of different methods for miRNA detection

Technology	Target	Linear range	LOD	Living cells imaging	Ref.
Fluorescence	miRNA-141	5-100 nmol L ⁻¹	2.5 nmol L ⁻¹	No	[1]
Fluorescence	miRNA-21		1.27 nmol L ⁻¹	Yes	[2]
Colorimetric	miRNA-155	1-100 nmol L ⁻¹	0.7 nmol L ⁻¹	No	[3]
Fluorescence	miRNA-21, let7a	0.05-10 nmol L ⁻¹ , 0.05-4 nmol L ⁻¹	16.67 nmol L ⁻¹ , 7.14 nmol L ⁻¹	Yes	[4]
Fluorescence	miRNA-155	0-30 nmol L ⁻¹	0.35 nmol L ⁻¹	Yes	[5]
Fluorescence	miRNA-21	1-60 nmol L ⁻¹	0.69 nmol L ⁻¹	Yes	[6]
Fluorescence	miRNA-21	0-10 nmol L ⁻¹	0.46 nmol L ⁻¹	Yes	This
					work

Table S2. The details of sequences used in the research

Name	Sequences (5'-3')		
miRNA-21	UAGCUUAUCAGACUGAUGUUGA		
H1	TCAACATCAGTCTGATAAGCGGTAGGGTAGGGCGCTT ATCAGACTGA		
	SH-		
т 111	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCAACA		
T ₃₅ -H1	TCAGTCTGATAAGCGGTAGGGTAGGGCGCTTATCAGA		
	CTGA-FAM		
Н2	TGATAAGCGCCCTACCCTACCGCTTATCAGACTGAGG		
112	TAGGGTAGGGCGGGTTGGG		
AS1411 aptamer	GGTGGTGGTGGTGGTGGTGG		
miRNA-155	UUA AUG CUA AUC GUG AUA GGG GU		
miRNA141	UAACACUGUCUGGUAAAGAUGG		
miRNA-122	UGG AGU GUG ACA AUG GUG UUU G		
miRNA-210	CUG UGC GUG UGA CAG CGG CUG A		

References

- [1] M. Q. Liu, R. Shen, H. R. Li, Y. W. Jia, P. I. Mak, R. P. Martins, Ratiometric fluorescence analysis for miR-141 detection with hairpin DNA-templated silver nanoclusters, *J. Mater. Chem. C*, 10, 2022, **10**, 655-664, DOI: 10.1039/d1tc04488e.
- [2] W. Pan, B. Liu, X. N. Gao, Z. Z. Yu, X. H. Liu, N. Li, B. Tang, A graphene-based fluorescent nanoprobe for simultaneous monitoring of miRNA and mRNA in living cells, *Nanoscale*, 2018, **10**, 14264-14271, DOI: 10.1039/c8nr04106g.
- [3] K. Shahsavar, E. Shokri, M. Hosseini, Sensitive colorimetric detection of miRNA-155 via G-quadruplex DNAzyme decorated spherical nucleic acid, *Microchim. Acta*, 2022, **189**, 357, DOI: 10.1007/s00604-022-05455-7.
- [4] Y. X. Wang, D. X. Wang, J. Wang, B. Liu, A. N. Tang, D. M. Kong, DNA nanolantern-mediated catalytic hairpin assembly nanoamplifiers for simultaneous detection of multiple microRNAs, Talanta, 2022, **236**, 122846, DOI: 10.1016/j.talanta.2021.122846.
- [5] Y. Wang, Y. Bai, L. P. Cao, L. L. Li, L. Zhan, H. Zuo, C. M. Li, C. Z. Huang, Catalytic hairpin assembled polymeric tetrahedral DNA frameworks for MicroRNA imaging in live cells, *Biosens. Bioelectron.*, 2022, **197**, 113783, DOI: 10.1016/j.bios.2021.113783.
- [6] C. Yang, K. Wang, Z. H. Li, L. T. Mo, W. Y. Lin, A two-photon metal-organic framework nanoprobe with catalytic hairpin assembly for amplified MicroRNA imaging in living cells and tissues, *Sensor Actuat B-Chem*, 2022, **359**, 131593, DOI: 10.1016/j.snb.2022.131593.