A near-infrared benzothiazole-based fluorescent probe for selective detection of CORM-3 with large Stokes shift in living cells

Liqiang Yan a* , Junjie Yang a , Yanxin Zhang a , Ying Sun a , Jianmei Zou a* a College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China

^{*}Corresponding author, E-mail: liqiangyan@glut.edu.cn; 2019136@glut.edu.cn

Table S1. Comparison of the detection performance of the probe with that of some recent probes

Probes	λex	λem	Stokes	LOD	Linear	Metal	Applications	Ref.
			shift		range	ions		
NC CN	430	480	50 nm	4.5	0-40	Pd^{2+}	Cell imaging	27
LN CO	nm	nm		nM	μΜ		(Exogenous/Endogenous)	
							Zebrafish	
CYCN	620	675	55 nm	58	0-300	Pd^{2+}	Cell imaging	28
	nm	nm		nM	μM		(Exogenous/Endogenous)	
							Zebrafish	
"	575	630	55 nm	9.4	0-70	Pd^{2+}	Cell imaging	29
	nm	nm		nM	μM		(Exogenous/Endogenous)	
COOH COOH							Co-localization	
COOA							Zebrafish	
HN AN	440	533	93 nm	0.012	0-100	NO	Cell imaging	30
\$ - \$ - \$	nm	nm		μΜ	μΜ		(Exogenous/Endogenous)	
NO ₂							Zebrafish	
	400	450	50 nm	12	0-1000	NO	Cell imaging	31
O ₂ N OH	nm	nm		nM	μΜ		(Exogenous/Endogenous)s	
	430	541	111	0.97	0-100	NO	Cell imaging	32
NH O NO2	nm	nm	nm	nM	μΜ		(Exogenous/Endogenous)	
					•		Zebrafish	
	450	590	140	146	0-300	$\mathrm{Fe^{3+}}$	Cells imaging	33
	nm	nm	nm	nM	μМ		(Endogenous)	
N-N N				111.1	Pilit		Test paper	
9	405	470	65 nm	212	0-14	Pd^{2+}	Cell imaging	34
	nm	nm	00 11111	nM	μМ	1	(Exogenous/Endogenous)	5.
L _N LLooko	11111	11111		11141	μινι		Zebrafish	
	396	520	124			Cu^{2+}	Cells imaging	35
				-	-	Cu	(Endogenous)	33
N OH	nm	nm	nm				(Endogenous)	
) N.N.	430	590	160	0.86	0-100	Cu^{2+}	Cell imaging	36
HOLIN	nm	nm	nm	nM	μΜ		(Exogenous/Endogenous)	
					·			
	662	743	91 nm	38	0-4	NO		44
					μМ			
					•			
03S							,	
	420	660	240	0.14	0-1200	NO	Cells imaging	This
N 0								work
's \\				L	r			ora
							-	
N O SO3	nm 662 nm	nm 743 nm	nm 91 nm	nM 38 nM	μM 0–4 μM	NO		

S1 Conventional instruments

¹H and ¹³C NMR spectra were recorded on a Bruker Avance III Ascend spectrometer (500 MHz). Fluorescence spectra were measured with an F98 spectrofluorophotometer (Lengguang Technology, Shanghai, China). High-resolution mass spectrometry (HRMS) analyses were performed on a Waters G2-XS Qtof spectrometer (United States). Solution pH values were determined using a PHS-25 pH meter. Melting points were determined on an SGW X-4 micro melting point apparatus.

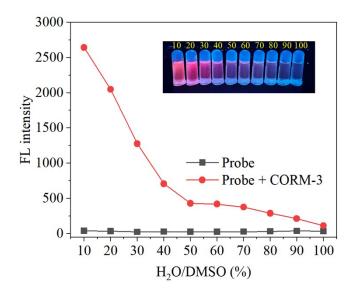


Fig. S1. Before and after the addition of CORM-3 (1 mM), the fluorescence intensity of the probe (10 μ M) varied with the H₂O/DMSO volume ratio.

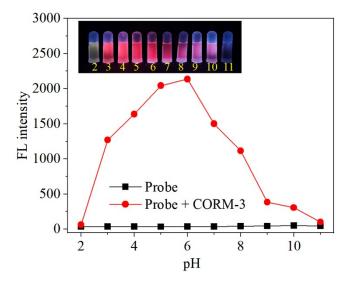


Fig. S2. The effect of pH on the fluorescence intensity of the probe (10 μ M) and CORM-3 (1 mM).

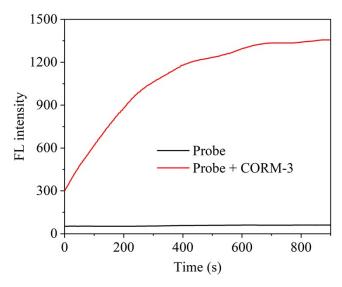


Fig. S3. The variation in the fluorescence intensity of the probe (10 μ M) at 660 nm was monitored over time before and after the addition of CORM-3 (1 mM).

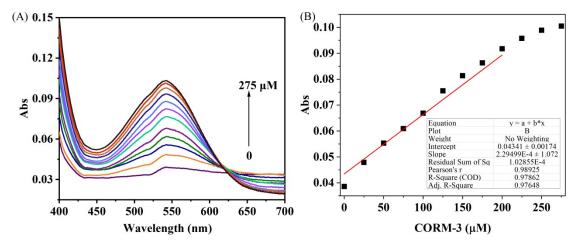


Fig. S4. (A) The ultraviolet-visible absorption spectral changes of the probe (10 μ M) following reaction with varying concentrations of CORM-3 (0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, and 275 μ M). (B) The correlation between the absorbance (545 nm) of the probe and the concentration of CORM-3

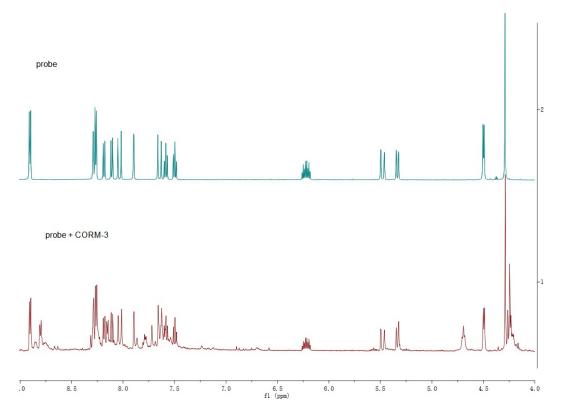


Fig. S5. Comparative analysis of the 1H NMR spectra before and after the addition of CORM-3 in DMSO- d_6 .

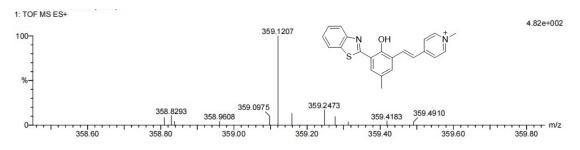


Fig. S6. HRMS of the probe after addition of CORM-3 in CH_3OH .

Table S2. Spiked Recovery values of CORM-3 in bovine serum using the test strips

Samples	Addition (µM)	Detection(µM)	Recovery (%)	RSD (%)
	100	104.7 ± 5.6	104.7	5.3
BSA	200	200.6 ± 7.2	100.3	3.6
	400	421.3 ± 10.5	105.3	2.5

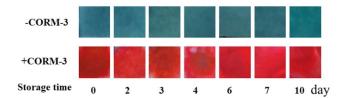


Fig. S7. The detection effect of the test paper for CORM-3 was evaluated under 365 nm ultraviolet light after a period of storage.

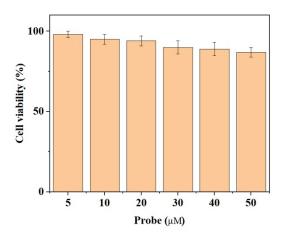


Fig. S8. Cell viability effect of the probe on HeLa cells after 12 h-incubation.

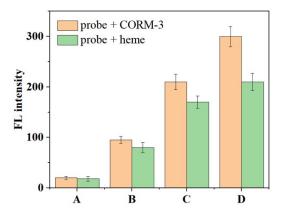


Fig. S9. Intensity of fluorescence imaging of HeLa cells. Orange columns: The probe (20 μ M) with CORM-3 at different concentrations of 0 (A), 25 (B), 100 (C), and 300 μ M (D). Pale green columns: The probe (20 μ M) with heme (100 μ M) for varying durations, 0 h (A), 0.5 h (B), 4 h (C), and 10 h (D).

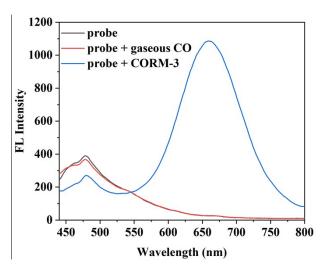


Fig. S10. Fluorescence spectra of the probe (10 μ M) after interaction with the gaseous CO (generated by the reaction between formic acid and concentrated sulfuric acid) and the CO-release agent CORM-2 (1.0 mM).

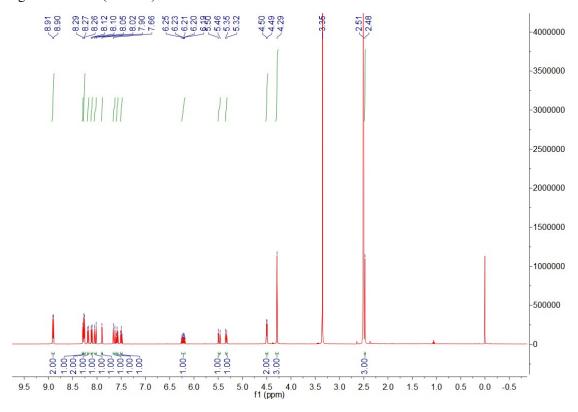


Fig. S11. 1 H NMR of the probe in DMSO- d_6 .

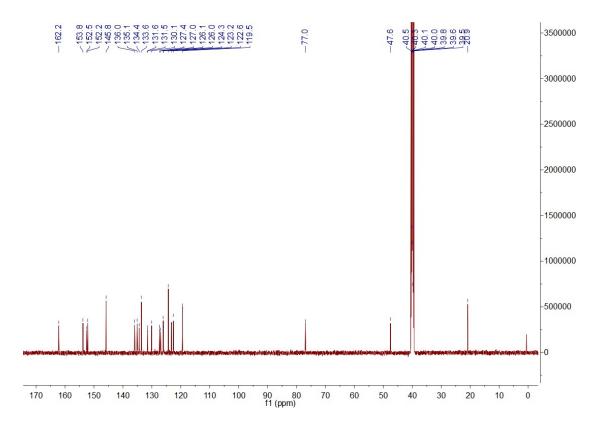


Fig. S12. 13 C NMR of the probe in DMSO- d_6 .

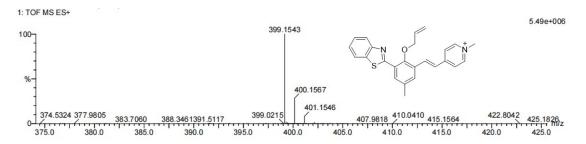


Fig. S13. HRMS of the probe in CH₃OH.