Supporting Information

Gas-Phase Esterification within a Miniature Ion Trap Mass Spectrometer: Mechanistic Insight and Diagnostic Markers for Quinolone Screening

Wei Wang,^{1#} Baokun Yang,^{2#} Jie Hong,³ Xinhui Yu,³ Baoqiang Li,⁴ Wei Xu,² Yanbing Zhai^{2*}

1 Key Laboratory of Detection Technology of Focus Chemical Hazards in Animalderived Food, State Administration for Market Regulation, Wuhan 430075, China

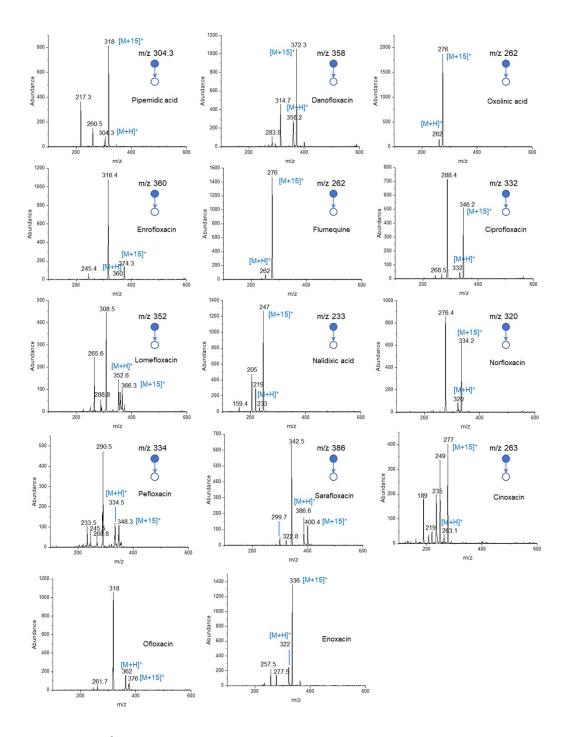
2 School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China

3 Kunshan Nier Precision Instrumentation Inc., Kunshan, 215316, China

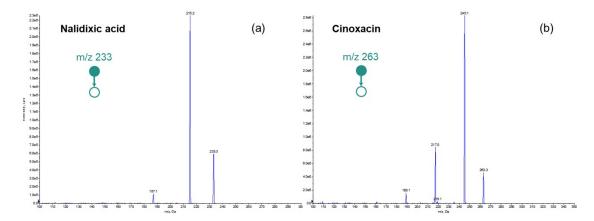
4 State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China

*Corresponding Author:

Yanbing Zhai


School of Medical Technology

Beijing Institute of Technology


Haidian, Beijing, 100081, China

Email: zhaiyanbing@bit.edu.cn

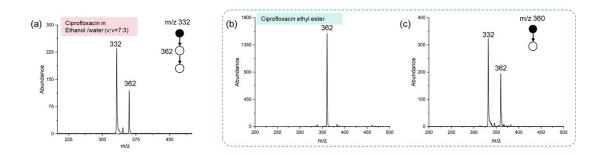

Authors contributed equally.


Figure S1. MS² tandem mass spectra of 14 all quinolones where adduct products were observed.

Figure S2. MS² tandem mass spectra of (a) nalidixic acid and (b) cinoxacin using QqQ mass spectrometer (AB4500 Triple QuadTM, AB SCIEX). No adduct ions were generated for both analytes.

Figure S3. (a) MS3 spectrum of ciprofloxacin adduct (m/z 362); and full-MS spectrum (b), and MS2 spectrum of ciprofloxacin ethyl ester (m/z 362).

Figure S4. Tandem mass spectra of ciprofloxacin diluted in (a) water, (b) Methanol/water, and (c) Ethanol /water.

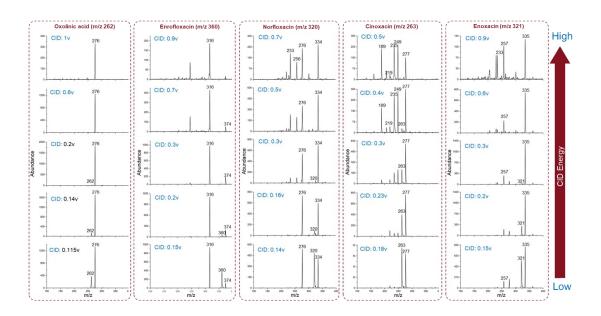


Figure S5. MS2 spectra of quinolones under different CID voltages.

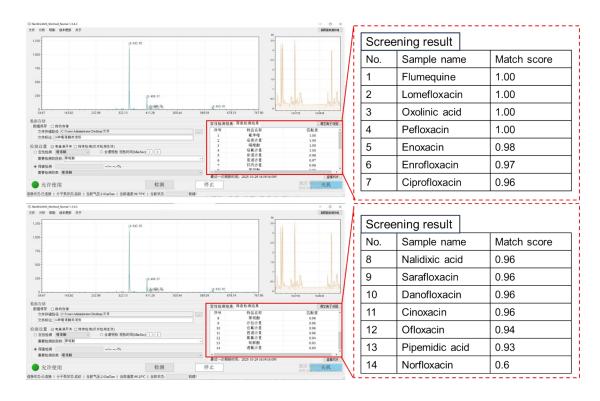
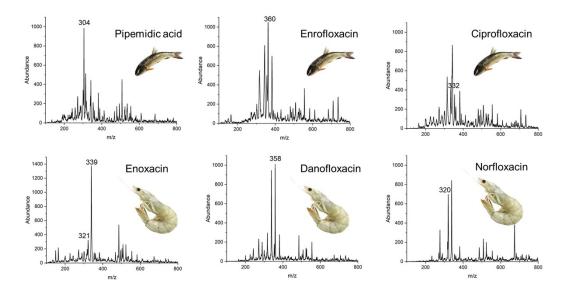



Figure S6. The screen capture of the screening results of quinolones on MS software.

Table S1. Summary of screening results for the 14 quinolone standards using the conventional approaches without adduct peaks.

No.	Name	Chemical formula	MW	Confidence score
1	Nalidixic acid	$C_{12}H_{12}N_2O_3$	232.2	0.65
2	Oxolinic acid	C ₁₃ H ₁₁ NO ₅	261.2	0.20
3	Flumequine	$C_{14}H_{12}FNO_3$	261.2	0.54
4	Cinoxacin	$C_{12}H_{10}N_2O_5$	262.2	0.68
5	Pipemidic acid	$C_{14}H_{17}N_5O_3$	303.3	0.56
6	Norfloxacin	$C_{16}H_{18}FN_3O_3$	319.3	0.39
7	Enoxacin	$C_{15}H_{17}FN_4O_3$	320.3	0.58
8	Ciprofloxacin	$C_{17}H_{18}FN_3O_3$	331.3	0.36
9	Pefloxacin	$C_{17}H_{20}FN_3O_3$	333.3	0.55
10	Lomefloxacin	$C_{17}H_{19}F_2N_3O_3$	351.3	0.74
11	Danofloxacin	$C_{19}H_{20}FN_3O_3$	357.3	0.41
12	Enrofloxacin	$C_{19}H_{22}FN_3O_3$	359.4	0.74
13	Ofloxacin	C ₁₈ H ₂₀ FN ₃ O ₄	361.3	0.36
14	Sarafloxacin	$C_{20}H_{17}F_2N_3O_3$	385.3	0.73

Figure S7. Full-scan mass spectra of (a) pipemidic acid, (b) enrofloxacin, and (c) ciprofloxacin detected in grass fish; and (d) enoxacin, (e) danofloxacin, and (f) norfloxacin detected in shrimper.