Supplementary Information (Sl) for Analyst.
This journal is © The Royal Society of Chemistry 2026

Supporting Information

Improved NMR-based diffusion measurements for inorganic ions

Maria Clara D. N. G. Leal, Binhan Yu, Tianzhi Wang, and Junji lwahara

Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular

Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA

Contents

S1. Pulse program for the BPP spin-echo method for Bruker NMR instruments

S2. Python program to determine ionic diffusion coefficients from BPP spin-echo data

S1. Pulse program for the BPP spin-echo method for Bruker NMR instruments

This pulse program is for the pulse sequence shown in Figure 1B. It was used with a Bruker Avance
III spectrometer operated with TopSpin version 3.6.

;BPP spin-echo sequence

;Reference: Leal et al. (2026) Analyst
; SCLASS=HighRes

; SDIM=2D

; STYPE=

; SSUBTYPE=

; SCOMMENT=

#include <Avance.incl>
#include <Grad.incl>

#include <Delay.incl>

define list<gradient> diff=<Difframp>

Hp2:p1*2"
1 ze
2 dl
50u UNBLKGRAD
pl phl
p30:gpo6*diff
dle
p2 ph2
p30:gp6*-1*diff
dle
p30:gp6*diff
dle
p2 ph4
p30:gp6*-1*diff
dle
4u BLKGRAD
go=2 ph3l
dl mc #0 to 2 F1QF (calgrad(diff))
exit
phl= 0
ph2= 01 2 3
ph4d= 0 000 1 111 2222 3333
ph31=0 2 0 2 2 0 2 O

;pll: f1 channel - power level for pulse (default)
;pl : f1 channel - 90 degree high power pulse
;p2 : fl channel - 180 degree high power pulse
;pl9: gradient pulse 2 (spoil gradient)

;p30: gradient pulse (little DELTA * 0.5)

;dl : relaxation delay; 1-5 * T1

;dl6: delay for gradient recovery

;ns @ 8 * n

;ds ¢4 * m

;tdl: number of experiments

; FnMODE: QF

; use xf2 and DOSY processing
;use gradient power: gp 6
; 100

; For Egq. 1 of Leal et al. (2026) Analyst
; [big Delta] = 2.0*p30 + 2.0*dl6 + 2.0*pl
; [little delta] = 2.0*p30

;for z-only gradients:

;gpz6: 100%

;use gradient files:

;gpnam6: SMSQ10.100

;use AU-program dosy to calculate gradient-file Difframp

S2. Python program to determine ionic diffusion coefficients from BPP spin-echo data

This Python program, BPPdiffusion.py, reads the BPP diffusion data processed by the ‘xf2’
command of the Bruker TopSpin software and determines an ionic diffusion coefficient. The BPP
spin-echo data are supposed to be recorded with the pulse program shown on the prior page, whereas
the BPP stimulated-echo data are supposed to be recorded with the pulse program ‘stebpgpls’ in the
Bruker’s standard pulse program library. In each case, the TopSpin data directory should contain a
‘difflist’ file generated by the AU program ‘dosy’ to run the experiment.

For example, for the BPP spin-echo data located at the directory ~/spec/avan750/Doty39K/120, the
program can be executed as follows:

> BPPdiffusion.py -d ~/spec/avan750/Doty39K/120 -emode 1 -calibF 1.0722 -smode 1

The option ‘-emode’ should be 1 for BPP spin-echo data or 2 for BPP stimulated-echo data. The
option ‘-calibF’ is used for correction of the gradient strengths listed in the ‘difflist’ file. Each
gradient strength will be multiplied by the correction factor specified via this option. The option -
smode’ is used to select either peak heights (‘-smode 1°) or integrals (‘-smode 2’) for the signal
intensities. When the integral is used, the options ‘-b1’ and ‘-b2’ should be used to specify the integral
boundaries (e.g., *-bl 1.2 -b2 -0.5” when the integral should be calculated for the region between 1.2
and -0.5 ppm). For the above example, the outputs are:

11 gradients
Original in difflist
46.771 G/cm
201.116 G/cm
355.461 G/cm
509.806 G/cm 546.614 G/cm
664.151 G/cm 712.103 G/cm

| Corrected

|

|

|

|

|
818.496 G/cm | 877.591 G/cm

|

|

|

|

|

50.148 G/cm
215.637 G/cm
381.125 G/cm

972.841 G/cm 1043.080 G/cm
1127.186 G/cm 1208.569 G/cm
1281.531 G/cm 1374.058 G/cm
1435.876 G/cm 1539.546 G/cm
1590.221 G/cm 1705.035 G/cm

Other experimental parameters

pl = 32.00 us
p30 = 1500.00 us
dle = 0.001500 s
Experiment type: BPP spin-echo (emode = 1)

Nuclei: 39K
Gyromagnetic ratio = 1.2499e+07 T-1 s-1

Use the following conditions for TopSpin 'vargrad' fitting to compare the results.
Gamma: 198.932 Hz/G
LITDEL: 3.000 msec
BIGDEL: 5.314 msec
Note that TopSpin 'vargrad' fitting directly utilize difflist graidents without correction.

Bipolar gradient shape: SMSQ10.100
Sinnaeve parameters: lambda = 0.5000; kappa = 0.3495

Diffusion coefficient: 1.766e-09 +/- 1.269e-11 m2 s-1

The program also opens two separate windows showing the overlaid spectra and the data fitting:

1e6 1e6
— 50.1 G/cm
1.0 215.6 Gjcm 1.0 4
381.1 G/cm
—— 546.6 G/cm
0.8 712.1 Gjem 0.8 1
—— 877.6 Gjcm _
1043.1 G/em 3
m
0.6 &
1208.6 G/cm < i
1374.1 G/cm .
1539.5 G/em =
0.4 4 ~——— 1705.0 Gfcm E
L < 0.4
0.2 1
J 0.2
0.0 : &;
T . T T : 0.0 1— T T T : : T T
40 20 0 -20 -40 0 250 500 750 1000 1250 1500 1750
39K (ppm) Gradient strength (Gfcm)

A€>»+Q=DR Aa€>2»4+Q=R

The source code of BPPdiffusion.py is given below. A Jupyter version of this Python program is also
available upon request to j.iwahara@utmb.edu.

#!/usr/bin/env python3
coding: utf-8

wnn

This script reads a BPP spin-echo NMR dataset collected and processed with Bruker TopSpin
and determine the diffusion coefficient for iorganic ions. The data must be processed with
the TopSpin command, 'xf2', Dbefore running this script. Thediffusion coefficinet 1is
determined as described in:

- Leal, M.C.D.N.G, Yu, B., Wang, T., Iwahara, J. (2026) Magn. Reson. Chem. XXX, XXXX-XX
A BPP spin-echo pulse program for Bruker NMR instruments is also available in the Supporting
Information of this paper.

This script requires nmrglue, NumPy, matplotlib, and SciPy libraries for Python. If your
computer does not have them, you can install them by running:
> python3 -m pip install nmrglue

> python3 -m pip install numpy

> python3 -m pip install matplotlib

> python3 -m pip install scipy

import argparse

import ast

import nmrglue as ng

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve fit

parser = argparse.ArgumentParser (
description="Process BPP diffusion NMR data."

)

parser.add argument (

"-dataDir", "-d",

required=True,

type=str,

help="Directory containing the Bruker dataset (e.g., /path/to/expdir)"
)

parser.add argument (
"_emode", n_e",
type=int,
choices=[1, 2],

mailto:j.iwahara@utmb.edu

required=True,
help="1 = BPP spin-echo, 2 = BPP stimulated-echo"
)

parser.add argument (
"-calibF", "-c",
type=float,
default=1.0,
help="PFG correction factor (default = 1 if no correction is needed)"

)

parser.add argument (
"—smodg" , n_su ,
type=int,
choices=[1, 2],
required=True,
help="1 = use peak heights; 2 = use intergral for the selected range"

)

parser.add argument (

"-bl",

type=float,

default=None,

help="Integral boundary (chemical shift in ppm): Required only if smode = 2"
)

parser.add argument (
n_b2n,_
type=float,
default=None,
help="Integral boundary (chemical shift in ppm): Required only if smode = 2"

dataDir = args.dataDir
emode = args.emode
calibF = args.calibF
smode = args.smode
if args.smode ==

if args.bl is None:

raise ValueError ("smode = 2 requires -bl and -b2 options")
if args.b2 is None:
raise ValueError ("smode = 2 requires -bl and -b2 options")
rangelntegral = [args.bl, args.b2]
else:
rangelIntegral = None # not used

Nuclear gyromagnetic ratios
The values gyromagnetic ratios are from Hennel & Klinowski "Fundamentals of Nuclear
Magnetic Resonance". The values are in 1077 T-1 s-1 units. You can add other nuclei in the
same format here if necessary.

nucs = []; grs = [];

nucs.append ('1H') ; grs.append(26.752196)
nucs.append ('7Li") ; grs.append(10.39758)
nucs.append ('13C"); grs.append 6.72828)
nucs.append ('15N") ; grs.append(-2.712621)
nucs.append('23Na'); grs.append 7.080416)

(
((
((
((
((

nucs.append ('25Mg'); grs.append(-1.6389)

((
((
((
((
((

nucs.append ('31P"); grs.append(10.8394)
nucs.append ('33S"'); grs.append 2.05568)
nucs.append ('35C1l'); grs.append 2.6241906)
nucs.append ('39K"') ; grs.append 1.249928)
nucs.append ('133Cs"'); grs.append 3.533253)

Loading data

dataFile dataDir + "/pdata/1"
difflList = dataDir + "/difflist"
dic, data = ng.bruker.read pdata(dataFile)

dlist0 = np.loadtxt (diffList)
tn=len(dlist0)
dlist = dlist0 * calibF
print ("%d gradients"™ % tn)
print (" Original in difflist | Corrected")
for n in range(tn):
print (" %$8.3f G/cm | %$8.3f G/cm" % (dlistO[n], dlist[n]))

print ("\nOther experimental parameters")
pl = dic['acqus']['P'][1]*10**(-6); # pl in s
p30 = dic['acqus']['P'][30]*10**(-6); # p30 in s

11

dlée = dic['acqus']['D'][16]; # dl16 in s
d20 = dic['acqus']['D'][20]; # d20 in s
print (" pl = %7.2f us" % dic['acqus']['P'][1])
print ("p30 = %7.2f us" % dic['acqus']['P'][30])
print ("dl6 = %$7.6f s" % dic['acqus']['D'][1l6])
if (emode == 1):

print ("Experiment type: BPP spin-echo (emode = %d)" % emode)

bD = (p30 + d16)*2.0 + pl*2.0
elif (emode == 2):

print ("d20 = %$7.6f s" % dic['acqus']['D'][20])
print ("Experiment type: BPP stimulated-echo (emode = %d)" % emode)
bD = d20

else:

raise ValueError ("emode must be either 1 (for BPP spin-echo) or 2 (for BPP stimulated
echo) ")

1d = p30*2.0
ta = dlo
nu=dic['acqus'] ['NUC1"']

ga = 0.0001;
for n in range(len(grs)):
if (nu == nucs[n]): ga = grs[n] * 10**7;
if (abs(ga) < 0.1):
raise ValueError ("No matching nuclei")
else:
print ("\nNuclei: %$s" % nu)
print ("Gyromagnetic ratio = $7.4e T-1 s-1" % ga)
print ("\nUse the following conditions for TopSpin 'vargrad' fitting to compare the
results.")

print (" Gamma: %.3f Hz/G" % (ga/(2.0*np.pi)*10**(-4)))
print (" LITDEL: %.3f msec" & (1d*10**3))
print (" BIGDEL: %.3f msec" % ((bD - ta/2.0)*10**3))

print ("Note that TopSpin 'vargrad' fitting directly utilize difflist graidents without
correction.\n")

Sinnaeve parameter setting

Here, based on the information of gradient shape, we set Sinnaeve's parameters according
to Sinnaeve, D. (2012) Concepts Magn Reson 40A, 39-65. Here, the parameters lambda and
kappa are set. Note that the parameter sigma is already taken into account when difflist
is created by the AU script 'dosy' of topspin.

gpnam6 = dic['acqus']['GPNAM'] [6]
print ('Bipolar gradient shape: %s' % gpnamé6)
base gpnamé6 = gpnam6.split('.") [0]
if (base gpnam6 == 'SMSQ10'):
kap = 422.0/1215.0 + 23.0/(1080.0* (np.pi**2)); # See Table 1 of Sinnaeve
lam = 0.5; # See Table 1 of Sinnaeve
elif (base gpnam6 == 'SINE'):

kap = 3.0/8.0; # See Table 1 of Sinnaeve
lam = 1.0/2.0; # See Table 1 of Sinnaeve
elif (base gpnam6 == 'RECT'):
kap = 1.0/3.0; # See Table 1 of Sinnaeve
lam = 1.0/2.0; # See Table 1 of Sinnaeve
else:
raise ValueError ("Unsupported gradient shape: %$s" $ gpnamo6)

print ("Sinnaeve parameters: lambda = %7.4f; kappa = %7.4f" $ (lam, kap))

Showing 1D slices

offs = dic['procs']['OFFSET']
swppm = dic['procs']['SW p']
el = offs; # Edge of the spectrum
e?2 = offs-swppm/dic['procs']['SF']; # Edge of the spectrum
xs ppm = np.linspace(el,e2,dic['procs']['SI"'])
plt.figure()
for n in range(tn):
plt.plot(xs_ppm,dataln,:],1lw = 0.5, label="%.1f G/cm" % dlist[n])
plt.xlabel ("%s (ppm)" % nu)
plt.legend()
plt.xlim([max(xs ppm), min(xs ppm)]); # To reverse x-axis

Model function for fitting

def mf(x, Dif, ao):
gl = (2.0*kap - 2.0*lam - 1.0)/4.0; # For Eg.53 of Sinnaeve
h = ao*np.exp (-Dif* (10** (-12)) *((ga*x* (10**(-2))*1d)**2) *(bD + gl*ld - ta/2.0))
10**(-12) is for um2 s-1 [instead of m2 s-1]
10**(-2) is for G/cm [instead of T/m]
return h

Nonlinear least-squares fitting and best-fit curve

sa = [1;
for n in range (tn):
ipk = np.argmax(data[0,:]); # Index for the peak position in the 1lst spectrum
ys = dataln,:1;
if (smode == 2)
sg = ys[(xs_ppm < max(rangelntegral)) & (xs_ppm > min(rangeIntegral))]
sa.append (sum(sqg))
elif (smode == 1)
sg = ys[ipk]
sa.append(sqg)
else:
raise ValueError ("smode must be 1 or 2")

iao = sa[0]; iDbif = 100.0;

ivs = [iDif, iao]

pfit,pcov = curve fit(mf, dlist, sa, ivs)

sxs = np.linspace (0, max(dlist)*1.1,100);

bfc = mf (sxs, pfit[0],pfit([1])

Di = pfit[0]*10** (-12); # in m2 s-1

eDi = np.sqrt(pcov[0,0])*10**(-12); # in m2 s-1

print (" "
print ("Diffusion coefficient: %.3e +/- %.3e m2 s-1" % (Di, eDi))
print (" ")
plt.figure()

plt.plot (sxs,bfc,'r")
plt.plot(dlist,sa, 'o")

plt.xlabel ("Gradient strength (G/cm)")
plt.ylabel ("Amplitude (a.u.)")
plt.ylim ([0, max(sa)*1.05])

plt.show ()

