

SUPPORTING INFORMATION

An “off-on” Electrochemiluminescence Biosensor Based on CRISPR-Cas12a for Ultrasensitive Detection of Aflatoxin B1

Zhi-Hong Xu,^{a#} Xiao Hu,^{a#} Xin Weng,^a Ruo-Mei Lin,^a Wen Xu,^{a*} Li-Shuang Yu,^{a*} and Hang Gao^{b*}

^a College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China

^b School of Chemistry and Materials, Yangzhou University, Yangzhou 225002, China
These authors contributed equally.

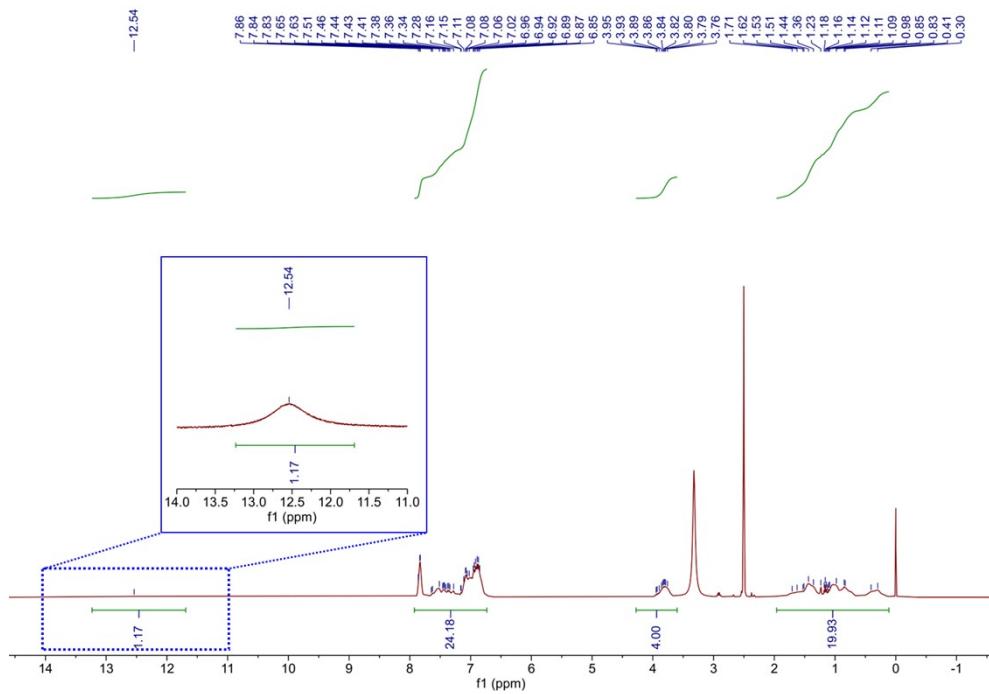
*Corresponding author E-mail: 2012029@fjtcm.edu.cn (W. Xu); yuls66@fjtcm.edu.cn (L. Yu); gaohang@yzu.edu.cn (H. Gao)

Table of contents

1. Preparation of Pdots
2. Treatment of real samples
3. ^1H NMR spectrum of polymer
4. PL spectra and PL trends of polymer with different water fractions
5. UV-vis absorption spectrum of Pdots
6. CV diagram of Pdots in TEA
7. Optimization of oxidative-reductive coreactants
8. UV-vis absorption spectrum of BHQ and PL emission spectrum of Pdots
9. PAGE of TDN.
10. Optimization of the TEA concentration.

11. Comparison of the proposed “off-on” biosensor and previous reports on OTA detection.

12. Reference.


1. Preparation of Pdots.

Pdots were prepared via a nano-coprecipitation method.^{1,2} First, a THF solution of 100 µg/mL polymer was as the stock solution. Then, 2 mL polymer solution was quickly injected into the ultrapure water, which was degassed by sonication before use. After continued sonication for 3 min, the solution was concentrated to 2 mL by vacuum distillation through a rotary evaporator. Finally, the reaction solution was filtered to obtain a Pdots suspension with carboxyl groups.

2. Treatment of real samples

For the spiked sample assays, *Anoectochilus roxburghii* was first pulverized using a grinder to yield a homogeneous powder. Spiked samples were then prepared by incorporating specific amounts of AFB1 standards into the homogenized powder. Subsequently, 30 mL of a mixed organic solvent (methanol/water, 70:30, v/v) was added, and the mixture was stirred thoroughly for 30 min. Following vacuum filtration, the resulting filtrate was collected, appropriately diluted, and subjected to ECL scanning analysis.

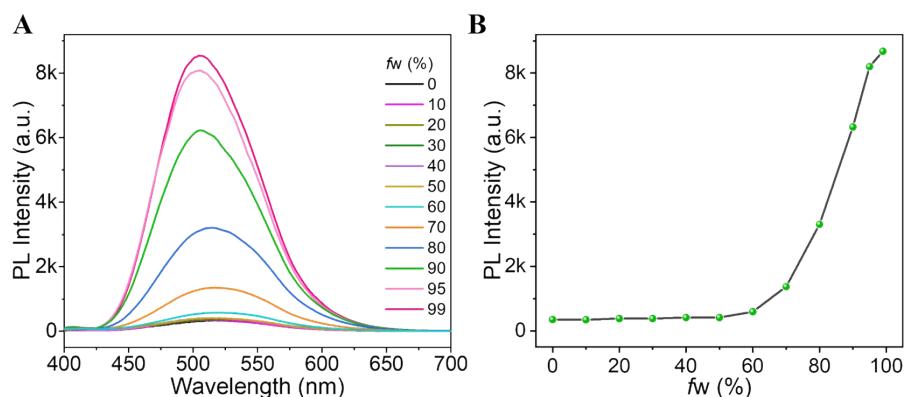
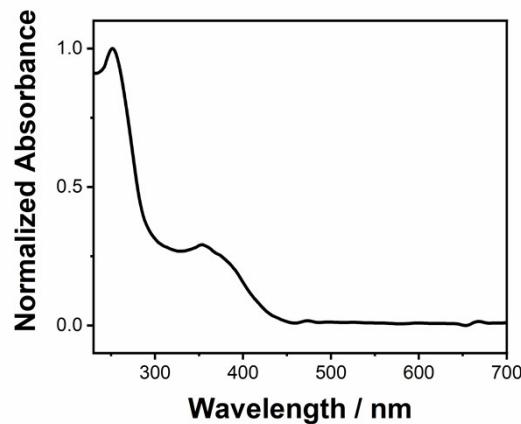
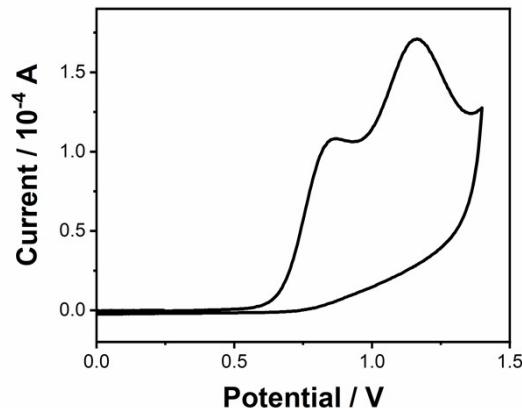

3. ^1H NMR spectrum of polymer

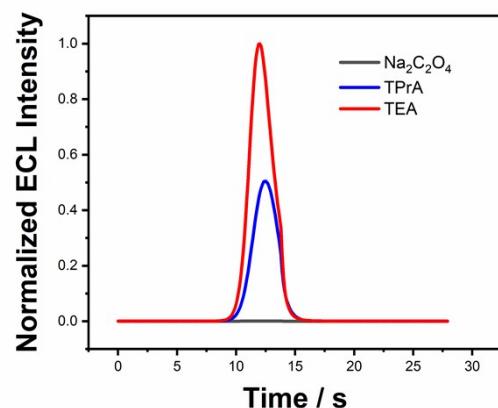
Figure S1. Nuclear magnetic resonance spectroscopy (^1H NMR) of polymer. Inset: enlarged region of dashed box.


^1H NMR (400 MHz, $\text{DMSO}-d_6$) δ (ppm): 12.54 (s), 7.86-6.85 (m, 24H), 3.95-3.76 (m, 4H), 1.71-0.30 (m, 20 H).

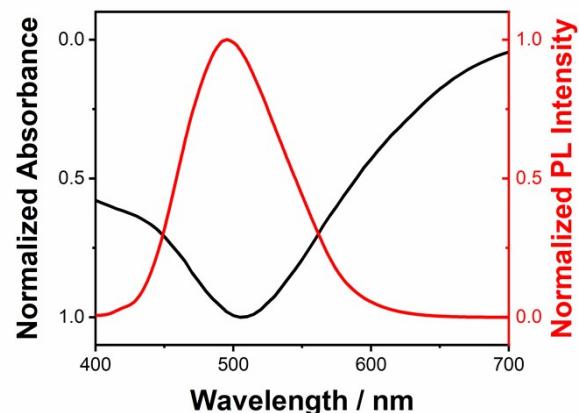
4. PL spectra and PL trends of polymer with different water fractions


Figure S2. PL spectra (A) and PL trends (B) of polymer in $\text{THF}/\text{H}_2\text{O}$ mixtures with different f_w (10⁻⁵ mol L⁻¹).

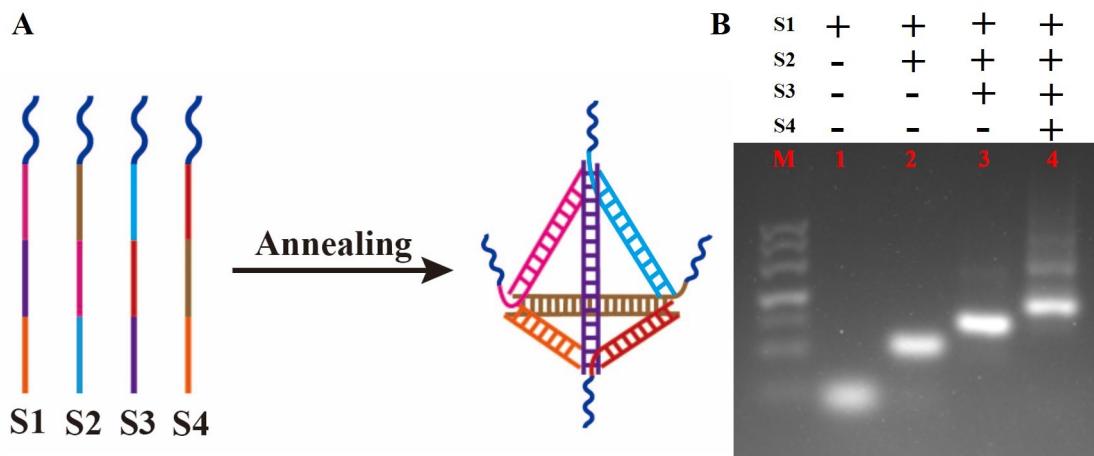
5. UV-vis absorption spectrum of Pdots


Figure S3. UV-vis absorption spectrum of Pdots.

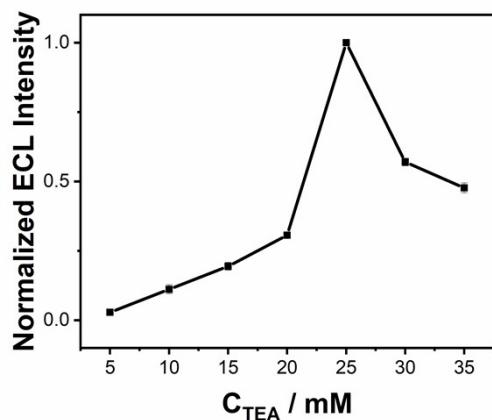
6. CV diagram of Pdots in TEA


Figure S4. CV diagram of Pdots in TEA

7. Optimization of oxidative-reductive coreactants


Figure S5. ECL intensity-time curves of Pdots/GCE in 0.1 M PBS with different co-reactants (25 mM).

8. UV-vis absorption spectrum of BHQ and PL emission spectrum of Pdots


Figure S6. UV-vis absorption spectrum of BHQ and PL emission spectrum of Pdots.

9. PAGE of TDN.

Figure S7. (A) Assembling of TDNs. (B) PAGE analysis of TDN.

10. Optimization of the TEA concentration.

Figure S8. Optimization of the TEA concentration.

11. Comparison of the proposed ECL biosensor and previous reports on AFB1 detection

Table S1. Comparison of the current approach and previous reports on AFB1 detection

Methods	Dynamic range	Detection limit	Reference
Fluorescence	0.10-400 ng/mL	0.09 ng/mL	[3]
Fluorescence	0-3.33 ng/mL	0.08 ng/mL	[4]
Fluorescence	0.01-100 ng/mL	5.81 pg/mL	[5]
Electrochemistry	0.05-360 ng/mL	3.5 pg/mL	[6]
Electrochemistry	0.001-1000 ng/mL	0.34 pg/mL	[7]
Electrochemistry	0.001-1000 ng/mL	0.17 pg/mL	[8]
ECL	0.05-100 ng/mL	0.01 ng/mL	[9]
ECL	0.001-1000 ng/mL	0.46 pg/mL	[10]
ECL	0.1-1000 pg/mL	0.06 pg/mL	This work

12. References

- (1) Y. Chen, Y. He, J. Zhao, J. Zhang, R. Yuan and S. Chen, *Anal. Chem.*, 2022, **94**, 4446-4454.
- (2) Z. Mao, C. Dai, Y. Xu, J. Jia, L. Ke and Y. Zhou, *Anal. Chem.*, 2024, **96**, 12760-12766.
- (3) Y. Kong, Y. Zhu, J. Song, Q. Liu, L. Song, X. Fei and X. Li, *Food Chem.*, 2023, **426**, 136645.
- (4) X. Dou, G. Wu, Z. Ding and J. Xie, *Food Chem.*, 2023, **416**, 135805.
- (5) X. Gao, Y. Liu, J. Wei, Z. Wang and X. Ma, *Spectrochim. Acta, Part A*, 2024, **315**, 124268.
- (6) W. Li, Y. Shi, X. Zhang, X. Hu, X. Huang, N. Liang, T. Shen, X. Zou and J. Shi, *Food Chem.*, 2024, **442**, 138312.
- (7) X. Jia, Y. Xu, Z. Suo, W. Ren, R. Zhao and B. He, *Sens. Actuators, B*, 2025, **426**, 137118.
- (8) Y. Jin, Z. Wu, C. Hu, W. Wen, X. Zhang and S. Wang, *Chem. Eng. J.*, 2023, **469**, 143830.
- (9) C. Sun, X. Liao, B. Jia, L. Shi, D. Zhang, R. Wang, L. Zhou and W. Kong, *Mikrochim. Acta*, 2020, **187**, 236.
- (10) J. Li, S. Wang, H. Yang, R. Li, R. Cai and W. Tan, *Sens. Actuators, B*, 2023, **380**, 133407.