## **Electronic Supplementary Material**

# A novel route for fabrication of yellow emissive carbon dots for

## selective and sensitive detection of vitamin B12

Yousef A. Bin Jardan <sup>a</sup>, Aya M. Mostafa <sup>b</sup>, James Barker <sup>c</sup>, Almontaser Bellah H. Ali<sup>b</sup>,

#### Mohamed M. El-Wekil<sup>b</sup>

<sup>a</sup> Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451 Saudi Arabia

<sup>b</sup> Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526 Egypt

<sup>c</sup> School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-upon-

Thames, London KT1 2EE UK

### Instrumentation

Excitation and emission spectra were recorded using a Shimadzu RF-5301 PC spectrofluorometer (Tokyo, Japan). Transmission electron microscopy (TEM) images were acquired with a JEOL 4000 EX microscope. X-ray diffraction (XRD) patterns were analyzed to determine the crystallinity of the Y-CDs using a Philips-FEI X-ray Diffractometer (Netherlands) equipped with a thin-film attachment, operating at 55 kV. UV-Vis absorbance measurements were performed on a Shimadzu 1601 PC spectrophotometer (Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) analysis was conducted with a Focus IS-PEEM X-ray photoelectron spectrometer. The functional groups present on the surface of the Y-CDs were identified using a Thermo Scientific Nicolet iS50 Fourier Transform Infrared (FTIR) Spectrometer (USA). Dynamic light scattering (DLS) measurements were carried out using the ZEN 3600 Nano ZS instrument (Malvern, UK).

#### Fluorescence quantum yield measurements of Y-CDs (X)

The quantum yield (QY) values were calculated according to the following equation using quinine sulfate (QS) as a reference in 0.1 mol/L  $H_2SO_4$  (QY = 54 %). By measuring the absorbance (less than 0.05) and emission spectra of a certain concentration of Y-CDs and QS at the same excitation wavelength at 360 nm, the absorbance and fluorescence integral area were substituted into the following formula:

$$\phi_X = \phi_{QS} \times \frac{F_X}{F_{QS}} \times \frac{A_{QS}}{A_X} \times \frac{\eta_X}{\eta_{QS}}$$

 $\Phi_X$  represents the quantum yield of Y-CDs,  $\phi_{QS}$  represents the quantum yield of QS,  $F_X$  is the fluorescence intensity of QS, A refers to the absorbance value and  $\eta$  refers to the refractive index of the solvent (distilled water). The synthesized Y-CDs were dissolved in distilled water ( $\eta = 1.33$ ) and QS was dissolved in 0.1 M H<sub>2</sub>SO<sub>4</sub> ( $\eta = 1.33$ ).



Fig.S1 Picture of expired Rabicid® tablets.



Fig.S2 Influence of synthesis temperature (A) and time (B) on the fluorescence emission of Y-CDs.



**Fig.S3** (A) The effect of different diluting solvents on the fluorescence emission of Y-CDs at 10  $\mu$ M concentration of vitamin B12, using various 0.1 M diluting solvents: (1) HCl, (2) NaOH, (3) Citrate buffer saline, (4) Acetate buffer saline, (5) Phosphate buffer saline, and (6) Water. (B) Influence of reaction time on the fluorescence emission of Y-CDs in the presence of 10  $\mu$ M vitamin B12.



**Fig.S4** (A) The absorption of vitamin B12 and emission spectrum of Y-CDs. (B) Fluorescence lifetimes of Y-CDs and Y-CDs+ vitamin B12. (C) Stern-Volmer plots at various temperatures (290°C, 300 °C, and 310°C).