Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2025

Table S1: Results obtained from determination of indacaterol acetate, and mometasone furaoate in artificial admixtures using the developed spectrophotometric methods.

Mixture No.	Mixture ratio (INDA: MOM)	Claimed (taken µg mL ⁻¹)		1-DWM Recovery % ^a		2- RSM Recovery % ^a		3- FADM Recovery % ^a		4-AASM Recovery % ^a		5- DRM Recovery % ^a		6-DAFM Recovery % ^a	
		INDA	MOM	INDA	MOM	INDA	МОМ	INDA	МОМ	INDA	MOM	INDA	МОМ	INDA	МОМ
1 ^b	7.50: 4.00	15.00	8.00	99.43	103.01	100.75	100.00	99.06	102.86	99.46	102.38	100.25	100.15	99.22	102.57
2°	7.50: 8.00	15.00	16.00	99.28	100.64	98.34	98.83	97.50	101.17	99.30	98.26	99.86	99.95	98.98	101.55
3	1.00: 1.00	10.00	10.00	101.22	102.19	99.86	100.21	100.58	102.29	101.17	100.90	102.22	103.10	100.35	103.91
4	1.00: 2.00	7.00	14.00	98.85	100.50	99.59	98.07	97.78	100.89	98.69	100.26	97.18	100.04	100.35	99.15
5	3.00: 1.00	12.00	4.00	98.56	99.06	99.31	98.96	99.31	100.00	98.54	98.17	99.82	100.13	98.59	99.38
6	4.00: 3.00	8.00	6.00	97.15	98.13	97.07	97.57	99.77	97.92	96.74	101.49	98.39	100.70	97.86	101.18
Mean ± % RSD				99.08 ± 1.34	100.59 ± 1.82	99.15 ± 1.30	98.94 ± 1.05	99.00 ± 1.19	100.86 ± 1.75	98.98 ± 1.46	100.24 ± 1.72	99.62 ± 1.72	100.68 ± 1.21	99.23 ± 0.99	101.29 ± 1.81

^a Average of three determinations.

^{b&c} Ratio of the two drugs in their pharmaceutical formulations.

Table S2: Statistical comparison between the results of the developed spectrophotometric methods and that of the reported method for the determination of indacaterol acetate, and mometasone furaoate in their pure form.

	1-DWM		2- RSM		3- FADM		4-AASM		5- DRM		6-DAFM		Reported method ^a	
Component	INDA	MOM	INDA	MOM	INDA	MOM	INDA	MOM	INDA	MOM	INDA	MOM	INDA	MOM
Mean	99.99	100.16	100.01	100.18	100.01	100.18	100.19	100.44	100.49	100.39	100.04	100.01	99.88	100.17
SD	1.35	1.17	1.54	1.21	1.54	1.21	1.50	1.44	1.78	1.79	1.40	1.39	1.45	1.53
Variance	1.82	1.37	2.37	1.46	2.37	1.46	2.25	2.07	3.17	3.20	1.96	1.93	2.10	2.34
n	7	7	7	7	7	7	7	7	7	7	7	7	7	7
t-Test (2.365) ^b	0.876	0.989	0.866	0.991	0.866	0.991	0.683	0.716	0.463	0.796	0.823	0.834	-	-
F-Test (3.787) ^b	2.044	1.708	1.129	1.603	1.129	1.603	1.071	1.130	1.510	1.368	1.071	1.212	-	-

^a RP-HPLC method to estimate glycopyrronium bromide, indacaterol acetate, and mometasone furoate using Inertsil ODS C_{18} column as stationary phase and a mixture of methanol: 0.10% glacial acetic acid (pH4), as mobile phase. Also adjusting the flow rate to be 1.00 mL min⁻¹ and a detection wavelength was 233.00 nm [7].

^b The values between parentheses represent the corresponding tabulated values of t and F at probability (0.05).

Table S3: Comparison between the developed method and published ones [3, 4], considering the analytical performance (figures of merit).

Analytical	The develo spectrophotor	ped novel metric work	Spectrophotom	etric paper [3]	Chemometric paper [4]		
Parameters	INDA	МОМ	INDA	МОМ	INDA	MOM	
Calibration range (µg mL ⁻¹)	1.00 -30.00	1.00 -40.00	1.00 -30.00	1.10 -32.00	6.00- 18.00	4.00-20.00	
Correlation coefficient	0.9999	0.9999	0.9998 0.9997		0.9991	0.9995	
LOD (µg mL ⁻¹)	0.186	0.172	0.271 0.246		1.090	1.340	
LOQ (µg mL ⁻¹)	0.565	0.520	0.820 0.746		3.310	4.057	
Sensitivity	Lowest LO ensured <u>highe</u> of the new spectrophoton	D & LOQ st sensitivity developed netric work.	Moderate LC ensured <u>moderat</u> this rep spectrophotor	DD & LOQ te sensitivity of ported netric work.	Very high LOD & LOQ ensured <u>lowest</u> sensitivity of this reported chemometric work.		
Specificity	It assessed by both laborato admixtures (Atectura B pharmaceutica dosage form different concen 2&	y analysis of ory artificial (table 4) and reezhaler al merchant's n with two trations (tables 3)	It assessed by an laboratory mixtures (table isn't any result of any pharmac form	nalysis of <u>only</u> prepared e S2) but there ts for analysis eutical dosage m.	It assessed by analysis of Atectura Breezhaler pharmaceutical merchant's dosage form (tables S6)		
Accuracy	Standard technique wa three different $\pm 20\%$) and the accuracy of spectrophoton and also ensure effects were con- ensured that the interference excipients or Atectura Breezh	addition as applied at levels (100% hat assessed of developed metric work ed that matrix onsidered and here isn't any came from additives in aler capsules.	Neither appl addition techn matrix effec considered nor to results demons the analysis of forr	ied standard nique, so the ts were not there isn't any trated showed f any dosage ns.	Standard addition technique was not applied, so the matrix effects were not considered and excipients or additives in Atectura Breezhaler capsules may cause interference during analysis of drugs.		
Accuracy	100.12 100.23		99.90	100.15	99.95	100.25	

Table S4: Comparison between the developed method and published ones [3, 4], considering the ecological performance.

Ecological Parameters	The developed novel spectrophotometric work	Spectrophotometric paper [3]	Chemometric paper [4]		
GAPI	Sample Reagents & compounds	n Sample Reagents & preparation compounds Sample collection transportation preservation	Sample Reagents & preparation compounds of the compound of the compound of the compound of the compound of the compound of the compound of the compound of the compou		
	Category Items Total per points (P	alty Ps) Category Items Total penal points (PPs	ty) Category Items Total penalty points (PPs)		
Eco-scale	Reagent Ethanol 2 x 2 x 1 Instrument Energy; UV-spectro < 0.1 KWh per sample	Reagent Ethanol 2 x 2 x 1 = Instrument Energy; UV-spectro < 0.1 KWh per sample	4 Reagent Ethanol 2 x 2 x 1 = 4 Instrument Energy; UV-spectro < 0.1 KWh per sample		
	The sum of penalty points 7 Calculated Analytical Eco-score 100 - 7 =	The sum of penalty points 7 93 Calculated Analytical Eco-score 100 - 7 = 9	The sum of penalty points 7 3 Calculated Analytical Eco-score 100 - 7 = 93		
AGREE	11 12 1 12 1 2 1 2 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	11 12 1 10 9 8 7 6 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	0.75 0 7 0		
BAGI	90.0	87.5	90.0		
RGB- whiteness	Method: Spectrophotometric Rt: Scope of 90.0 G1: Tatch 110.0 B1: Cash 10.0 Rt: Scope of 90.0 G1: Rayons 120.0 B1: Cash 10.0 Rt: Pression 100.0 G2: Entrophotometric B2: Transmit 120.0 Rt: Accuracy 110.0 G2: Entrophotometric B2: Cash 10.0 90.8 100.6.3 91.0 120.0 G1: Direct 100.0 B2: Cash 10.0 90.8 106.3 91.5 120.0 100.0 95.3 120.0 108.3 91.5 100.0 90.5 108.3 95.3 20.0 90.5 108.3 95.3 20.0 90.5 108.3 91.5 20.0 90.5 108.3 91.5 20.0 90.5 108.3 91.5 20.0 90.5 108.3 91.5 20.0 90.5 108.3 91.5 20.0 90.5 108.3 91.5 20.0 90.5 108.3 91.5 20.0 90.	C 5.0 6.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	#1:500000 90.0 65:500000 100.0 85:5000 90.0 #1:500000 95:50000 92:5000 85:000 92:5000 92:5000 #0:00000000 92:50000 92:5000 90:00000000 92:50000 90:00000000000000000000000000000000000		