
Supplementary Data

Ultra-high performance liquid chromatography tandem mass spectrometry for profiling mercapturic acids in human urine after daily exposure to acrylamide, 3-monochloropropane-1,2-diol and glycidol

Wei Jia^{a,b}, Xing Ke^c, Anxian Huang^b, Pan Zhuang^a, Yiju Zhang^a, Xuzhi Wan^a, Jingjing Jiao^d, Ziqing Kong^{b,*}, Yu Zhang^{a,*}

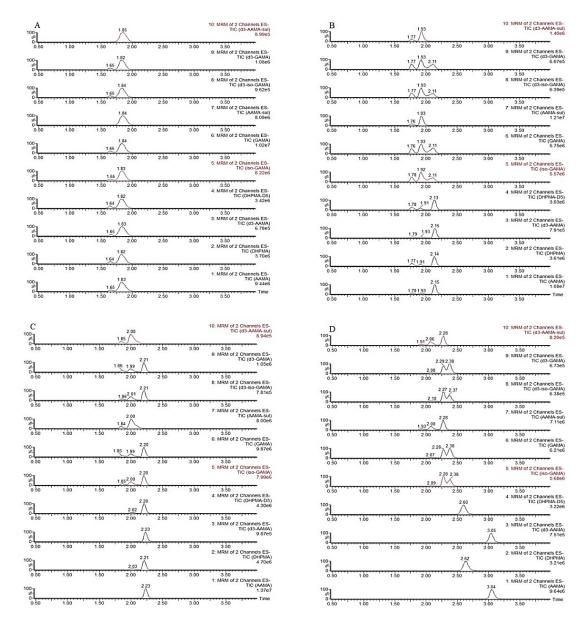
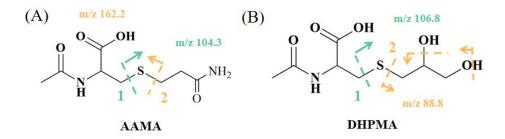
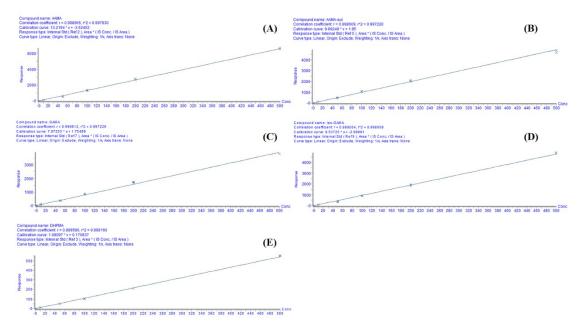
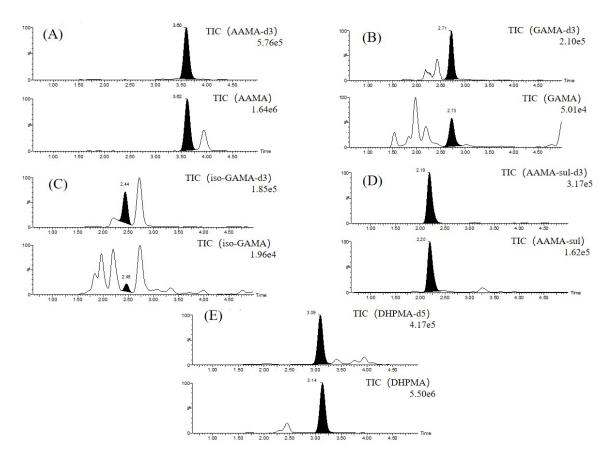

- ^a Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003; Zhejiang Key Laboratory for Agri-Food Resources and High-value Utilization, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
- ^b Calibra Lab at DIAN Diagnostics, Hangzhou, 310030, Zhejiang, China; Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provinces, Hangzhou, 310030, Zhejiang, China
- ^c Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
- ^d Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, and Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
- * Corresponding author: Yu Zhang and Ziqing Kong. **E-mail:** y_zhang@zju.edu.cn (Y.Z.) or ziqing.kong@calibradx.com (Z.K.)

Figure S1. The metabolic pathways of the five mercapturic acids of (A) acrylamide and (B) 3-MCPD and glycidol.

Figure S2. UHPLC-MS/MS chromatograms of the five mercapturic acids and their ISs separated by various UHPLC columns with different column lengths, diameters, and partial sizes. Chromatographic separation was performed on (A) Acquity UPLC® BEH C_{18} column (2.1×150 mm i.d., 1.7 μm); (B) Acquity UPLC® BEH AMIDE column (2.1×150 mm i.d., 1.7 μm); (C) Acquity UPLC® CSH fluoro-phenyl column (2.1×150 mm i.d., 1.7 μm); and (D) Acquity UPLC® HSS CYANO column (3.0×150 mm i.d., 1.8 μm). MRM channels: 1, AAMA; 2, DHPMA; 3, AAMA- d_3 ; 4. DHPMA- d_5 ; 5, iso-GAMA; 6, GAMA; 7, AAMA-sul; 8, iso-GAMA- d_3 ; 9, GAMA- d_3 ; 10, AAMA-sul- d_3 .

Figure S3. UHPLC-MS/MS chromatograms of five mercapturic acids and their ISs separated using various proportions of initial mobile phase (solvent A/solvent B): (A) 50:50, (B) 80:20, (C) 90:10, and (D) 96:4. MRM channels: 1, AAMA; 2, DHPMA; 3, AAMA- d_3 ; 4. DHPMA- d_5 ; 5, iso-GAMA; 6, GAMA; 7, AAMA-sul; 8, iso-GAMA- d_3 ; 9, GAMA- d_3 ; 10, AAMA-sul- d_3 .

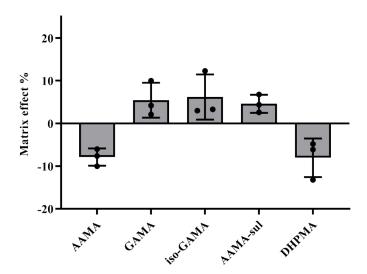

Figure S4. Fragmentation mechanisms of (A) AAMA and (B) DHPMA.

Figure S5. Calibration curves of (A) AAMA, (B) AAMA-sul, (C) GAMA, (D) iso-GAMA, and (E) DHPMA.

Figure S6. Typical UHPLC-MS/MS chromatograms for the simultaneous analysis of the five mercapturic acids and their deuterium-labeled ISs in human urinary samples. (A) AAMA (down layer) and AAMA- d_3 (upper layer); (B) GAMA (down layer) and GAMA- d_3 (upper layer); (C) iso-GAMA (down layer) and iso-GAMA- d_3 (upper layer); (D) AAMA-sul (down layer) and AAMA-sul- d_3 (upper layer); (E) DHPMA (down layer) and DHPMA- d_5 (upper layer).

Figure S7. Matrix effects of the five mercapturic acids. Data are expressed as mean \pm s.d. MEs were estimated by comparing the slopes of matrix-matched calibration curves (n=3) with those of solvent-based calibration curves (n=3) for each of the five mercapturic acid metabolites.

Table S1. LODs and LOQs of five mercapturic acids in urine of humans

Compound	AAMA	AAMA-sul	GAMA	iso-GAMA	DHPMA
	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)
LOD	0.1	0.2	0.3	0.3	0.3
LOQ	0.3	0.7	0.9	0.9	0.9