Electronic Supplementary Information

Eu-COF-based fluorescent and portable detection of acetone in

exhaled breath

Zhe Jiao^{a*,} Xiudong Shi^b, Xiaolin Zhang^a, Xiaofang Zhao^{c*}, Yueting Wang^a, Feng Xu^d, Jing Zhang^{b*}

^aSchool of Environment and Civil Engineering, Dongguan Key Laboratory of Lowcarbon and Recycling, Dongguan University of Technology, Dongguan 523808, China

^bDepartment of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

^cInternational School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China

^dChongqing Fisheries Technical Extension Center, Chongqing, 400000, China

*Corresponding author.

E-mail address: jiaoz@dgut.edu.cn (Zhe Jiao), zhaoxf@dgut.edu.cn (Xiaofang Zhao), zjsilence@i.smu.edu.cn (Jing Zhang)

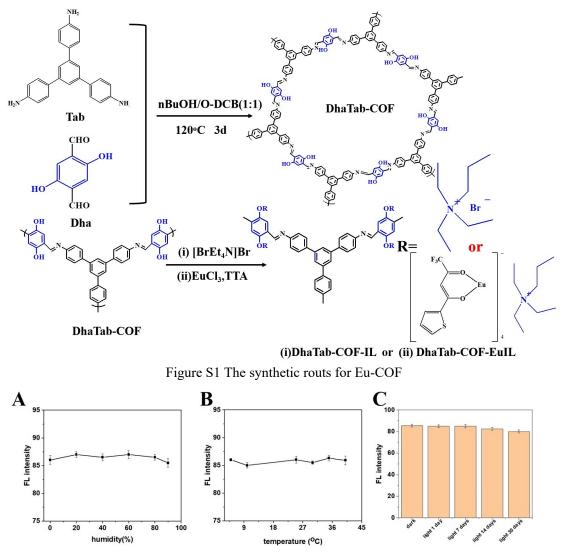


Figure S1 Study of humidity, environmental temperature and light intensity effect on acetone detection by Eu-COF.