Supporting information

A label-free fluorescence sensing platform based on $NaY_{0.47}F_4{:}Ce_{0.1}{,}Gd_{0.4}{,}Eu_{0.03}@PEIF down-conversion for selective detection of Cu^{2+} in aqueous environments$

Dongxu Yan^a, Wen Yao^b, Siwei Chen^a, Xinrong Guo^{b*}, Lishi Wang^{a*}

a: School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China. Tel: +86 020 87112906.

b: School of Public Health, Guangdong Medical University, Dongguan 523808, China.

E-mail address: guoxinr@gdmu.edu.cn

E-mail address: wanglsh@scut.edu.cn

Table of Contents

- 1. Reaction principles and characterization of PEIF.
- 2. Distribution of elements in Eu NPs and Eu@PEIF NPs.
- 3. UV absorption of PEIF mixed with Cu²⁺.
- 4. Analysis of the quenching mechanis.
- 5. Selectivity to Cu²⁺.
- 6. The detection of Cu^{2+} in an actual sample.

1. Reaction principles and characterization of PEIF

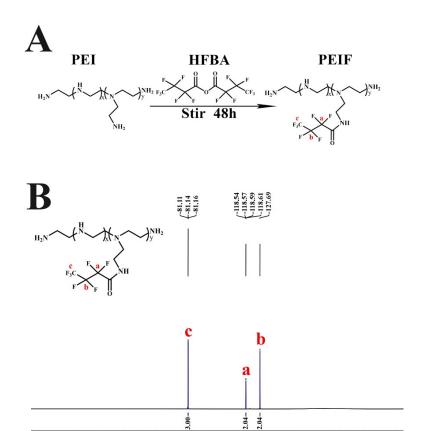


Fig. S1 (A) PEIF reaction equation (B) PEIF F NMR spectra

2. Distribution of elements in Eu NPs and Eu@PEIF NPs

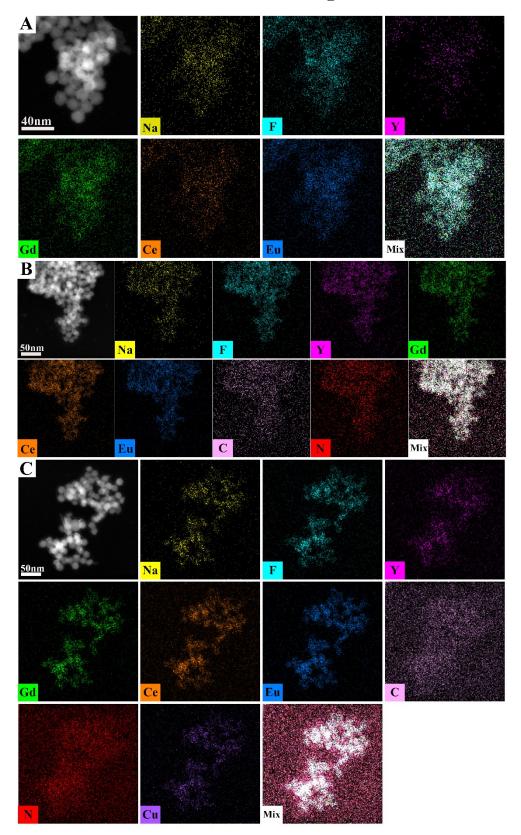


Fig. S2 (A) Eu NPs EDS mapping. (B) Eu@PEIF NPs EDS mapping. (C) Eu@PEIF NPs after addition of Cu^{2+} EDS mapping

Table S1 Element atomic fraction of Eu NPs, Eu@PEIF NPs and Eu@PEIF NPs+Cu²⁺

	Na(%)	F(%)	Y(%)	Gd(%)	Ce(%)	Eu(%)	C(%)	N(%)	Cu(%)
Eu NPs	10.28	69.21	12.83	5.74	1.52	0.42	-	-	-
Eu@PEIF	2.43	24.44	3.71	1.60	0.34	0.15	64.04	3.29	-
NPs									
Eu@PEIF	0.79	9.54	0.82	0.45	0.12	0.03	83.90	1.85	2.5
NPs+Cu ²⁺									

3. UV absorption of PEIF mixed with Cu²⁺

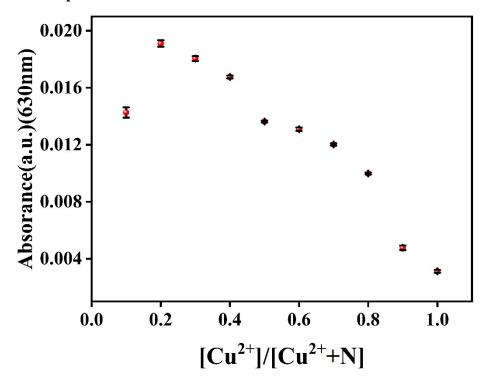


Fig. S3 UV absorption of Cu^{2+} and PEIF mixtures located at 630 nm at different proportional concentrations

4. Analysis of the quenching mechanism

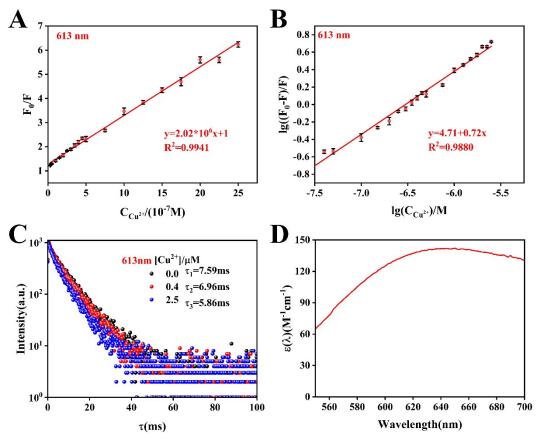


Fig. S4 (A) Linear fitting plot of F_0/F at 613 nm. (B) The double logarithmic curve at 613 nm. (C) Fluorescence lifetimes of Eu@PEIF NPs located at 613 nm after addition of different concentrations of Cu^{2+} . (D) Molar absorbance absorption of 550 nm-700 nm PEIF with Cu^{2+} complex.

5. Selectivity to Cu²⁺

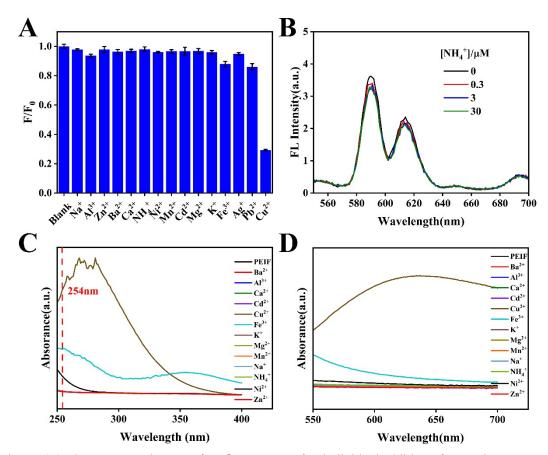


Fig. S5 (A) Fluorescence changes of Eu@PEIF NPs after individual addition of a certain amount of interfering ion (Na⁺, Al³⁺, Zn²⁺, Ba²⁺, Ca²⁺, NH₄⁺, Ni²⁺, Mn²⁺, Cd²⁺, Mg²⁺, K⁺ and Fe³⁺ all at a concentration of 100 μ M, and Cu²⁺ at a concentration of 0.5 μ M). (B)Fluorescence changes of Eu@PEIF NPs after addition of a certain amount of Cu²⁺ with different concentrations of NH₄⁺. UV absorption at (C) 250 nm-400 nm and (D) 550 nm-700 nm of different ions mixed with PEIF at the same concentration.

6. The detection of Cu^{2+} in an actual sample

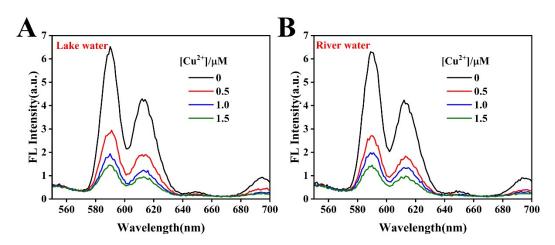


Fig. S6 Spectra of Eu@PEIF NPs after adding different concentrations of Cu^{2+} in (A) lake water and (B)river water