Supporting Information

Silver nanoclusters-based fluorescent probe for detection of trace water in organic solvents with its potential application in reaction monitoring

Decui Yao^{a*}, Ningning Yuan^a, Zhenzhen Miao^a, Dong Li^{a*} and Jing Yang^{b*}

^aCollege of Chemical Engineering and Materials, Handan University, Hebei Key Laboratory of Heterocyclic Compounds, Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Handan, Hebei 056005, China. E-mail: yaodecui@hdc.edu.cn.

^bSchool of Resources & Chemical Engineering, Sanming University, Sanming, 365004, Fujian, PR China.

Materials	detection	detection	reaction	visualization effect	reference
	range	limit	time		
Ru@MIL- NH2	0.05-5%	0.02%	less than 1 min	0 0.5% 1.0% 1.5% 2.5% 5.0%	Analytical Chemistry, 2017, 89 (24), 13434-13440.
Eu-organic framework s	1-99.5	0.024%		0% 1% 4% 10% 30% 50% 70% 95%	Dyes and Pigments 206 (2022) 110602
carbon dots	0.1–5%	0.068%		Proportion of water	New J. Chem., 2023, 47, 1985–1992
Eu-organic framework	0.05–10 %	0.02%	within 3 s	0% 0.5% 1% 2% 4% 6% 8% 10%	Anal. Chem. 2019, 91, 4845–4851
Cu nano clusters	0.00–5.0 0%	<0.02%			The Analyst, 2018, 143 (13), 3068 3074.
Silver nanocluster s	0.2-1.0%	<0.2	within 3 s	0.0 0.2 0.4 0.6 0.8 1.0 100 % v/v	

Table S1 Comparison of water detection methods based different materials.

Table S2 The com	position of the	LTA-Ag d	letermined by	V XPS
------------------	-----------------	----------	---------------	-------

element	Ag	Na	Si	Al	Ο
content (%)	10.7	5.03	16.47	15.78	52.02

Figure S1 Luminescence color of LTA-Ag material after being placed in air for a few seconds under UV excitation at 365 nm.

Figure S2. The digital photo of LTA-Ag with different water content under UV light of 365 nm.

Figure S3 Emission spectra of LTA-Ag with different water content.

Figure S4. Linear relationship of the $I_{\text{green}}/I_{\text{red}}$ with different water content.

Figure S5 Emission spectra of LTA-Ag dispersed in different solvents excited at 365 nm (1. methanol; 2. ethanol; 3. ethylene glycol; 4. n-propanol; 5. benzyl alcohol; 6. n-octanol; 7. n-butanol; 8. n-pentanol; 9. sec-butanol; 10. n-hexanol; 11. acetic acid; 12. ethyl acetate; 13. water).

Figure S6 Digital photographs of a) LTA-Ag in dehydration; b) LTA-Ag in hydration; c) LTA-Ag in dehydration after seven dehydration-hydration cycles; d) LTA-Ag in hydration after seven dehydration-hydration cycles, excited at 365 nm.

Figure S7 Emission spectra of LTA-Ag in dehydrated state after several cycles excited at 365 nm.

Figure S8 Emission spectra of LTA-Ag in hydrated state after several cycles excited at 365 nm.

Figure S9 Emission spectra of LTA-Ag in water, ethanol, acetic acid and ethyl acetate.