Supporting Information

Development of a NS-CDs/Fluorescein Ratiometric Fluorescent Sensor Integrated Smartphone Platform for Rapid and Specific Detection of Mn(VII) and Captopril

Chuntong Liu^{a,c}, Haiyan Qi^a*, Jiayu Zhang^a, Jun Li^{a,b}, Tao Jing^a, Qiuying Li^a, Lixin Qiu^a and Xiaochen Zhu^a

^a College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, P. R. China.

^b Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang 161006, P. R. China.

^c College of Arts and Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.

* Corresponding Authors E-mail: qhy120@sina.com (Haiyan Qi)

Figure S1. (A) X-ray diffraction (XRD) pattern of NS-CDs; (B) Fourier transform infrared (FTIR) spectroscopy of NS-CDs.

Figure S2. X-ray photoelectron spectroscopy (XPS) analysis of NS-CDs. (A) XPS survey scan of NS-CDs; (B) Element distribution of NS-CDs; High-resolution XPS spectra of (C) C1s, (D) O1s, (E) N1s, and (F) S2p of NS-CDs.

Figure S3. Fluorescence characterization of NS-CDs. (A) Emission spectra of NS-CDs excited at different short wavelengths; (B) Emission spectra of NS-CDs excited at different long wavelengths; (C) Excitation-emission 3D fluorescence matrix of NS-CDs within the full wavelength range; (D) Emission spectra of G-CDs at 690 nm before and after the addition of a long-pass (LP) filter

Figure S4. (A) UV-visible absorption spectrum of NS-CDs; (B) UV-visible absorption spectrum of fluorescein.

Figure S5. Mechanism of construction of NS-CDs/fluorescein ratio fluorescent sensor

Figure S6. Characterization of the NS-CDs/fluorescein ratiometric fluorescent sensor. (A) Salt tolerance of the sensor; (B) Photostability of the sensor; (C) pH sensitivity of NS-CDs, fluorescein, and the NS-CDs/fluorescein ratio fluorescent sensor.

Figure S7. Specificity and selectivity of Mn(VII) detection using the NS-CDs/fluorescein ratiometric fluorescent sensor. (A) Selectivity of the sensor to different substances; (B) Interference of Mn (VII) detected by the sensor with other substances.

Figure S8. Specificity and Selectivity of captopril detection using the sensor/Mn(VII) system. (A) Selectivity of the sensor/Mn(VII) system to different substances; (B) Interference of captopril detected by the sensor/Mn(VII) system with other substances.

Figure S9. (A) IR spectra for captopril before and after adding Mn(VII); (B) S2p spectrum of captopril before joining Mn(VII); (C) S2p spectrum of captopril after adding Mn(VII).

Figure S10. (A) UV-Vis spectra of Mn(VII) with various concentrations. (B) The concentration of captopril was determined by LC-MS using a standard curve.

B

Inj	out	Output				
Mn(VII)	Captopril	$F_{CDs}/F_{Fluorescein}$ (F ₁ /F ₂)				
1	1	0	Blue emitting			
1	0	1	Green emitting			
0	0	0	Blue emitting			
0	1	0	Blue emitting			

Figure S11. Design and operation of a fluorescent logic gate using the ratiometric fluorescent sensor. (A) Step-by-step diagram illustrating the operation of the fluorescent logic gate, which involves the addition of Mn(VII) and/or captopril to the sensor, followed by analysis of the fluorescent color and intensity using a smartphone-based system; (B) Truth table and QR codes for the logic gate operation parameters, which can be scanned and used to identify the inputs and outputs of the gate; (C) Simple logic gate diagram showing the inputs, and outputs.

Comments	Precursors	Linear range	Detection limit	Reference
		(µM)	(µM)	
CQDs	Fresh loquat fruits	0.2-150	0.062	[1]
R-CDs	Malic acid	0-115	0.0145	[2]
	Neutral red			
	1,8-diaminonaphthalene			
NS-CDs	Phosphoric acid	5-40	0.00716	[3]
	Formamide			
	2,5-thiophenedicarboxylic acid			
Tb-TDA	Tb(NO ₃) ₃ · 5H ₂ O	0-200	0.612	[4]
	Glacial acetic acid			
	Phthalic acid			
N,S-CDs	1,2-ethylenediamine	10-200	0.0483	[5]
	Concentrated phosphoric acid			
N-CDs	Auricularia auricula	0.15-9.00	0.12	[6]
Mn-CDs	Sulfanilicacid	3-150	0.66	[7]
	Manganese(II) Chloride			
	Citric acid			
NCD	p-hydroxybenzoic acid	0.57-2	0.17	[8]
	Ammonia			
N-CQDs	m-phenylenediamine	5-125	4.4	[9]
	Grape seed powder			
NCDs	Threonine	5-35	0.66	[10]
	Guanidine hydrochloride			
NS-CDs	ascorbic acid	0.12-100	0.12	This work
	Guanidine isothiocyanate			

Table S	51. Con	nparison	of different	fluorescent	probes for	or Mn(VII)	detection

Comments	Precursors	Linear range (µM)	Detection limit (µM)	Reference
CQDs	Citric acid Thiourea	1-50	0.1	[11]
N-CQDs	Polyethyleneimine Citric acid	10-65	0.00143	[12]
Fe/NC NZs	2-Methylimidazole Fe(acac) ₃ Zn(NO) ₃ ·6H ₂ O	1-50	0.47	[13]
W, N-CDs	Diammonium citrate tris-(hydroxymethyl)- aminomethane Na ₂ WO ₄	0.5-10	0.3	[14]
Cds-QDs	1,4-phenylene-N,N' -bis (O,O-diphenylphoramidate) L-cysteine	0.05-90	0.015	[15]
CDs-AuNCs	Ethylenediamine Citric acid Glutathione HuCl ₄	0.25-50	0.076	[16]
AgNCs	Glutathione AgNO ₃	5-60	1.12	[17]
TTA-Tp COF	3,3',5,5'-tetramethylbenzydine	1-100	0.78	[18]
Au@Cu-BTC	1,3,5-benzenetricarboxylate	0.5-7 10-2500	0.047	[19]
NS-CDs	ascorbic acid Guanidine isothiocyanate	0.52-300	0.52	This work

Table S2. Comparison of different fluorescent probes for Captopril detection

Samula	Original/	Added/	Founded /		RSD (%)
Sample	μmol/L	µmol/L	μmol/L	Recovery (%)	
Ardisia crenata	1.46	10	11.19	97.30	8.20
		20	22.18	103.57	5.46
		30	29.59	93.78	1.51
Ardisia	2.82	10	13.32	104.99	1.53
lindleyana		20	24.30	107.39	1.64
		30	30.04	90.73	1.62
Schefflera	1.14	10	11.41	102.68	3.30
Arboricola		20	20.84	98.50	1.45
		30	28.61	91.57	0.34
Acanthopanax	2.72	10	13.67	109.49	0.83
Senticosus		20	23.36	103.22	1.11
		30	29.84	90.40	0.13
Glabrous	3.28	10	13.61	103.27	1.82
Greenbrier		20	24.61	106.65	1.02
Rhizome		30	30.67	91.30	0.14

Table S3. Determination of Mn(VII) that added in medicinal herb samples (n=3).

Table S4. Determination of captopril that added in captopril tablet sample (n=3).

		-		< ,	
Sample	Original/ μmol/L	Added/ μmol/L	Founded / µmol/L	Recovery (%)	RSD (%)
Captopril		60	153.30	103.61	2.78
tablet	91.13	110	206.94	105.28	2.03
		200	282.23	95.55	3.31

Sample	Original/ μmol/L	Added/ μmol/L	Founded / µmol/L	Recovery (%)	RSD (%)	Color signal
A . 11 . 1	Ú,	10	11.41	100.61	6.98	
Ardisia crenata	1.35	20	22.16	104.07	5.25	
		30	31.80	101.50	3.56	
	C	10	13.51	107.86	0.76	
Ardısıa lindleyana	2.72	20	23.55	104.16	3.06	
		30	33.32	102.01	3.05	
S - h - f Claure		10	11.05	97.04	1.16	
Arboricola	1.35	20	22.80	107.24	1.82	
		30	33.06	105.71	1.18	
A coath caroa av		10	13.60	107.84	0.83	
Senticosus	2.82	20	23.52	103.50	2.57	
		30	33.78	103.21	1.90	
Glabrous	()	10	13.55	103.76	0.43	
Greenbrier Rhizome	3.17	20	24.09	104.57	2.77	
		30	32.65	98.28	1.97	

Table S5. Determination of Mn(VII) by smartphones standard addition recovery (n=3).

Table 50. Determination of captoprin by smartphones standard addition recovery (n=5).									
Sample	Original/ μmol/L	Added/ µmol/L	Founded / µmol/L	Recovery (%)	RSD (%)	Color signal			
Cantopril)(60	152.43	101.75	1.80				
tablet	91.38	110	202.37	100.90	3.56				
		200	290.82	99.72	0.25				

Table S6. Determination of captopril by smartphones standard addition recovery (n=3).

Reference

- P.Wang, J. Wang, T. Liu, Loquat fruit-based carbon quantum dots as an "ON-OFF" probe for fluorescent assay of MnO₄⁻ in waters based on the joint action of inner filter effect and static quenching, Microchem. J. 178 (2022) 107374.
- [2] D. Chang, Z. Zhao, J. Feng, Lysosome-targeted red-fluorescent carbon dots for turn-on detection of permanganate and pH in vivo and in vitro, Sensor. Actuat. B-Chem. 349 (2021) 130774.
- [3] L. Shi, J. Feng, X. Li, Handheld detection strategy: Real-time on-site assay of Mn(VII) and GSH integrating ratiometric fluorescent carbon dots paper strip, smartphones, and 3D-printed accessory, Actuat. B-Chem. 375 (2022) 132871.
- [4] Z. Yuan, G. Hou, L. Han, A Terbium-Based MOF as fluorescent probe for the detection of Malachite Green, Fe³⁺ and MnO₄⁻, Zeitschrift f
 ür anorganische und allgemeine Chemie 648 (2021) e202100301.
- [5] F. Du, G. Li, X. Gong, Facile, rapid synthesis of N,P-dual-doped carbon dots as a label-free multifunctional nanosensor for Mn(VII) detection, temperature sensing and cellular imaging, Actuat. B-Chem. 277 (2018) 492-501.
- [6] W. Chen, H. Lin, Y. Wu, Fluorescent probe of nitrogen-doped carbon dots derived from biomass for the sensing of MnO₄⁻ in polluted water based on inner filter effect, Adv. Compos. Hybrid. Ma. 5 (2022) 2378-2386.
- [7] X. Chu, G. Ning, Z. Zhou, Bright Mn-doped carbon dots for the determination of permanganate and L-ascorbic acid by a fluorescence on-off-on strategy, Microchim. Acta. 187 (2020) 659.
- [8] V. Naik, D. Gunjal, A. Gore, Nitrogen-doped carbon dot threads as a "turn-off" fluorescent probe for permanganate ions and its hydrogel hybrid as a naked eye sensor for gold (III) ions, Anal. Bioanal. Chem. 412 (2020) 2993-3003.
- [9] L. Lin, Q. Lai, Q. Chen, Turning waste into wealth: nitrogen-doped carbon quantum dots derived from fruits wastes for sensing, Luminescence (2021) 37340-347.
- [10]A. Mohammed, Y. Gugulothu, R. Bandi, Ultraspeed synthesis of highly fluorescent N-doped carbon dots for the label-free detection of manganese (VII), J. Chin. Chem. Soc-Taip. 68 (2021) 1514-1521.
- [11]Y. Fu, Z. Li, Z. Zhou, A Fluorescent Self-Absorption Method for Detection of Captopril using Carbon Quantum Dots, Chemistryselect. 7 (2022) e202200518.
- [12]L. Dewangan, Y. Chawre, J. Korram, N-doped, silver, and cerium co-doped carbon quantum dots based sensor for detection of Hg²⁺ and captopril, Microchem. J. 182 (2022) 107867.
- [13] M. Wu, Y. Lv, Z. Lin, Dual-mode colorimetric and fluorescence sensing system for the detection of captopril based on Fe/NC nanozymes and carbon dots, Spectrochim. Acta. A. 282 (2022) 121683.
- [14] Y. Guan, Y. Zu, P. Ma, Cascade Fluorescent Determination of Mercury (II) and Captopril Using Tungsten-Nitrogen Doped Carbon Dots, Anal. Lett. 2023.
- [15]G. Paimard, M. Gholivand, M. Shamsipur, Fabrication of a highly sensitive amperometric

sensor using 1,4-phenylene-N,N'-bis (O,O-diphenylphoramidate)/CdS quantum dots/multiwalled carbon nanotubes for nanomolar detection of captopril, J. Electroanal. Chem. 738 (2015) 176-183.

- [16]L. Han, T. Liu, D. Cui, Quantitative detection of captopril in urine by smartphone-assisted ratiometric fluorescence sensing platform, Spectrochim. Acta. A. 280 (2022) 121562.
- [17]L. Xi, X. Zhang, Y. Chen, A fluorescence turn-on strategy to achieve detection of captopril based on Ag nanoclusters, Chem. Phys. Lett. 807 (2022) 140085.
- [18] M. Yuan, S. Xiao, Y. Wu, Visual detection of captopril based on the light activated oxidasemimic activity of covalent organic framework, Microchem. J. 175 (2021) 107080.
- [19]D. Silva, M. Areias, Detection of Captopril in a Commercial Drug Using a Gold-Copper Metalorganic Framework Nanocomposite Modified Electrode, Electroanal. 33 (2021) 1255-1263.